Notes on zygmund functions
In this paper we study a class of continuous functions satisfying a certain Zyg-mund condition dependent on a parameter γ > 0. It shown that the modulus of continuity of such functions is O(δ(log 1/δ)1-γ) if ∈ (0, 1) and O(δ(log log 1/δ )) if γ = 1. Moreover, these functions are differentiable if...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Academic Publications, Ltd.
2017
|
Subjects: | |
Online Access: | http://repo.uum.edu.my/21982/1/IJPAM%20112%203%202017%20461%20488.pdf http://repo.uum.edu.my/21982/ http://doi.org/10.12732/ijpam.v112i3.3 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
my.uum.repo.21982 |
---|---|
record_format |
eprints |
spelling |
my.uum.repo.219822017-05-07T07:16:35Z http://repo.uum.edu.my/21982/ Notes on zygmund functions Akhadkulov, Habibulla Mohd Salmi, Noorani Saaban, Azizan Akhatkulov, Sokhobiddin QA Mathematics In this paper we study a class of continuous functions satisfying a certain Zyg-mund condition dependent on a parameter γ > 0. It shown that the modulus of continuity of such functions is O(δ(log 1/δ)1-γ) if ∈ (0, 1) and O(δ(log log 1/δ )) if γ = 1. Moreover, these functions are differentiable if γ > 1. These results extend the results in literatures [4], [5]. Academic Publications, Ltd. 2017 Article PeerReviewed application/pdf en cc4_by http://repo.uum.edu.my/21982/1/IJPAM%20112%203%202017%20461%20488.pdf Akhadkulov, Habibulla and Mohd Salmi, Noorani and Saaban, Azizan and Akhatkulov, Sokhobiddin (2017) Notes on zygmund functions. International Journal of Pure and Applied Mathematics, 112 (3). pp. 481-488. ISSN 1311-8080 http://doi.org/10.12732/ijpam.v112i3.3 doi:10.12732/ijpam.v112i3.3 |
institution |
Universiti Utara Malaysia |
building |
UUM Library |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Utara Malaysia |
content_source |
UUM Institutionali Repository |
url_provider |
http://repo.uum.edu.my/ |
language |
English |
topic |
QA Mathematics |
spellingShingle |
QA Mathematics Akhadkulov, Habibulla Mohd Salmi, Noorani Saaban, Azizan Akhatkulov, Sokhobiddin Notes on zygmund functions |
description |
In this paper we study a class of continuous functions satisfying a certain Zyg-mund condition dependent on a parameter γ > 0. It shown that the modulus of continuity of such functions is O(δ(log 1/δ)1-γ) if ∈ (0, 1) and O(δ(log log 1/δ )) if γ = 1. Moreover, these functions are differentiable if γ > 1. These results extend the results in literatures [4], [5]. |
format |
Article |
author |
Akhadkulov, Habibulla Mohd Salmi, Noorani Saaban, Azizan Akhatkulov, Sokhobiddin |
author_facet |
Akhadkulov, Habibulla Mohd Salmi, Noorani Saaban, Azizan Akhatkulov, Sokhobiddin |
author_sort |
Akhadkulov, Habibulla |
title |
Notes on zygmund functions |
title_short |
Notes on zygmund functions |
title_full |
Notes on zygmund functions |
title_fullStr |
Notes on zygmund functions |
title_full_unstemmed |
Notes on zygmund functions |
title_sort |
notes on zygmund functions |
publisher |
Academic Publications, Ltd. |
publishDate |
2017 |
url |
http://repo.uum.edu.my/21982/1/IJPAM%20112%203%202017%20461%20488.pdf http://repo.uum.edu.my/21982/ http://doi.org/10.12732/ijpam.v112i3.3 |
_version_ |
1644283391756992512 |
score |
13.211869 |