Improvement of adaptive GAs and Back propagation ANNs performance in condition diagnosis of multiple bearing system using grey relational analysis

Condition diagnosis of multiple bearings system is one of the requirements in industry field, because bearings are used in many equipment and their failure can result in total breakdown. Conditions of bearings commonly are reflected by vibration signals data.In multiple bearing condition diagnosis,...

全面介绍

Saved in:
书目详细资料
Main Authors: Wulandhari, Lili A., Wibowo, Antoni, Desa, Mohammad I.
格式: Article
出版: Hindawi Publishing Corporation 2014
主题:
在线阅读:http://repo.uum.edu.my/19427/
http://doi.org/10.1155/2014/419743
标签: 添加标签
没有标签, 成为第一个标记此记录!
id my.uum.repo.19427
record_format eprints
spelling my.uum.repo.194272016-11-14T06:17:49Z http://repo.uum.edu.my/19427/ Improvement of adaptive GAs and Back propagation ANNs performance in condition diagnosis of multiple bearing system using grey relational analysis Wulandhari, Lili A. Wibowo, Antoni Desa, Mohammad I. QA75 Electronic computers. Computer science Condition diagnosis of multiple bearings system is one of the requirements in industry field, because bearings are used in many equipment and their failure can result in total breakdown. Conditions of bearings commonly are reflected by vibration signals data.In multiple bearing condition diagnosis, it will involve many types of vibration signals data; thus, consequently, it will involve many features extraction to obtain precise condition diagnosis.However, large number of features extraction will increase the complexity of the diagnosis system.Therefore, in this paper, we presented a diagnosis method which is hybridization of adaptive genetic algorithms (AGAs), back propagation neural networks (BPNNs), and grey relational analysis (GRA) to diagnose the condition of multiple bearings system. AGAs are used in the diagnosis algorithm to determine the best initial weights of BPNNs in order to improve the diagnosis accuracy.In addition, GRA is applied to determine and select the dominant features from the vibration signal data which will provide good diagnosis of multiple bearings system in less features extraction.The experiments results show that AGAs-BPNNs with GRA approaches can increase the accuracy of diagnosis in shorter processing time, compared with the AGAs-BPNNs without the GRA. Hindawi Publishing Corporation 2014 Article PeerReviewed Wulandhari, Lili A. and Wibowo, Antoni and Desa, Mohammad I. (2014) Improvement of adaptive GAs and Back propagation ANNs performance in condition diagnosis of multiple bearing system using grey relational analysis. Computational Intelligence and Neuroscience, 2014. pp. 1-11. ISSN 1687-5265 http://doi.org/10.1155/2014/419743 419743
institution Universiti Utara Malaysia
building UUM Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Utara Malaysia
content_source UUM Institutionali Repository
url_provider http://repo.uum.edu.my/
topic QA75 Electronic computers. Computer science
spellingShingle QA75 Electronic computers. Computer science
Wulandhari, Lili A.
Wibowo, Antoni
Desa, Mohammad I.
Improvement of adaptive GAs and Back propagation ANNs performance in condition diagnosis of multiple bearing system using grey relational analysis
description Condition diagnosis of multiple bearings system is one of the requirements in industry field, because bearings are used in many equipment and their failure can result in total breakdown. Conditions of bearings commonly are reflected by vibration signals data.In multiple bearing condition diagnosis, it will involve many types of vibration signals data; thus, consequently, it will involve many features extraction to obtain precise condition diagnosis.However, large number of features extraction will increase the complexity of the diagnosis system.Therefore, in this paper, we presented a diagnosis method which is hybridization of adaptive genetic algorithms (AGAs), back propagation neural networks (BPNNs), and grey relational analysis (GRA) to diagnose the condition of multiple bearings system. AGAs are used in the diagnosis algorithm to determine the best initial weights of BPNNs in order to improve the diagnosis accuracy.In addition, GRA is applied to determine and select the dominant features from the vibration signal data which will provide good diagnosis of multiple bearings system in less features extraction.The experiments results show that AGAs-BPNNs with GRA approaches can increase the accuracy of diagnosis in shorter processing time, compared with the AGAs-BPNNs without the GRA.
format Article
author Wulandhari, Lili A.
Wibowo, Antoni
Desa, Mohammad I.
author_facet Wulandhari, Lili A.
Wibowo, Antoni
Desa, Mohammad I.
author_sort Wulandhari, Lili A.
title Improvement of adaptive GAs and Back propagation ANNs performance in condition diagnosis of multiple bearing system using grey relational analysis
title_short Improvement of adaptive GAs and Back propagation ANNs performance in condition diagnosis of multiple bearing system using grey relational analysis
title_full Improvement of adaptive GAs and Back propagation ANNs performance in condition diagnosis of multiple bearing system using grey relational analysis
title_fullStr Improvement of adaptive GAs and Back propagation ANNs performance in condition diagnosis of multiple bearing system using grey relational analysis
title_full_unstemmed Improvement of adaptive GAs and Back propagation ANNs performance in condition diagnosis of multiple bearing system using grey relational analysis
title_sort improvement of adaptive gas and back propagation anns performance in condition diagnosis of multiple bearing system using grey relational analysis
publisher Hindawi Publishing Corporation
publishDate 2014
url http://repo.uum.edu.my/19427/
http://doi.org/10.1155/2014/419743
_version_ 1644282701398671360
score 13.251813