Producer mobility support scheme for indirection-based mobility approach in named data networking

Named Data Networking (NDN) is a clean-slate future Internet architecture proposed to support content mobility by using hierarchical naming instead of IP addresses for routing. The hierarchical naming structure of NDN offers more benefits in supporting consumer mobility. However, the movements of pr...

Full description

Saved in:
Bibliographic Details
Main Author: Hussaini, Muktar
Format: Thesis
Language:English
English
English
Published: 2020
Subjects:
Online Access:https://etd.uum.edu.my/9080/1/s901843_01.pdf
https://etd.uum.edu.my/9080/2/s901843_02.pdf
https://etd.uum.edu.my/9080/3/s901843_references.docx
https://etd.uum.edu.my/9080/
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Named Data Networking (NDN) is a clean-slate future Internet architecture proposed to support content mobility by using hierarchical naming instead of IP addresses for routing. The hierarchical naming structure of NDN offers more benefits in supporting consumer mobility. However, the movements of producer inflict changes in routing name prefix hierarchy, which makes the entire network unaware of the new location of the producer. Thus, it causes some significant challenges, such as unnecessary Interest packet losses, high handoff latency, high signaling overhead cost, poor utilization of bandwidth, and path stretching. The aim of this research is to propose a Producer Mobility Support Scheme (PMSS) in order to minimize the handoff latency, signaling cost, improve data packets delivery via optimal path once a content producer relocated. The proposed PMSS model includes the formulated Mobility Weighted Function to incorporate movement behavior of the mobile producer. Also, Mobility Interest packet was designed to convey binding information and Broadcasting Strategy to facilitate handoff processes by updating the intermediate routers. Therefore, modeling and simulation methodologies were used in the design and performance evaluation of PMSS for rigorous investigation. The analytical result of PMSS scheme outperforms Optimal Producer Mobility for Larger-scale scheme with 50% lower handoff latency and signaling cost. Moreover, it minimizes 46% handoff signaling cost and improves 32% data path optimization as compared to the Kite scheme. The simulation results show that the proposed PMSS scheme minimizes 40% handoff latency, 28% packets delay, 28% unnecessary Interest packets loss, and improves 20% throughput. This study contributes to the development of the movement behavior model and mobility update packets. The findings have significant implication to support seamless mobility and the integration of NDN with other networks without additional mechanism.