Base Shear and Collapse Capacity Statistical Analysis

Abstract— As part of structural reliability assessment, the statistical analysis provides engineers with good estimation of distribution and statistical properties for both load and resistance. This study involved modelling of eight (8) offshore structures with the corresponding environmental c...

Full description

Saved in:
Bibliographic Details
Main Authors: Azman, Mohd Fadly, Kurian, V.J., Liew, Mohd Shahir
Format: Conference or Workshop Item
Published: 2011
Subjects:
Online Access:http://eprints.utp.edu.my/6555/1/1569473557_BaseShear_Fadly.pdf
http://eprints.utp.edu.my/6555/
Tags: Add Tag
No Tags, Be the first to tag this record!
id my.utp.eprints.6555
record_format eprints
spelling my.utp.eprints.65552017-01-19T08:22:25Z Base Shear and Collapse Capacity Statistical Analysis Azman, Mohd Fadly Kurian, V.J. Liew, Mohd Shahir TC Hydraulic engineering. Ocean engineering TA Engineering (General). Civil engineering (General) Abstract— As part of structural reliability assessment, the statistical analysis provides engineers with good estimation of distribution and statistical properties for both load and resistance. This study involved modelling of eight (8) offshore structures with the corresponding environmental conditions for ten (10), fifty (50) and hundred (100) years in order to perform non-linear push over analysis for getting the ultimate strength. The environmental condition covers three main oil and gas regions in Malaysia. The collective results of base shear and collapse capacity were used for statistical analysis. The data were analyzed using probability density function with central limit theorem under Gaussian distribution. All the statistical parameters such as mean value (μ), standard deviation (σ) and variance (V) were calculated. The average base shear from the statistical analysis has been obtained as 3.03 MN with a standard deviation of 3.35 and variance of 11.26. For the resistance part, the mean collapse capacity has been obtained as 18.28 MN with a standard deviation of 18.10 and variance of 327.93. This meant that for general case, the structural resistance is higher than the environmental loading. Using probability density function, the reliability index (β) was estimated through robust calculation between statistical parameters of load and resistance. From this calculation, reliability index (β) has been estimated as 3.97. I 2011-09 Conference or Workshop Item PeerReviewed application/pdf http://eprints.utp.edu.my/6555/1/1569473557_BaseShear_Fadly.pdf Azman, Mohd Fadly and Kurian, V.J. and Liew, Mohd Shahir (2011) Base Shear and Collapse Capacity Statistical Analysis. In: International Symposium on Business, Engineering and Industrial applications ISBEIA 2011, 25-28 September 2011, Langkawi. http://eprints.utp.edu.my/6555/
institution Universiti Teknologi Petronas
building UTP Resource Centre
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Teknologi Petronas
content_source UTP Institutional Repository
url_provider http://eprints.utp.edu.my/
topic TC Hydraulic engineering. Ocean engineering
TA Engineering (General). Civil engineering (General)
spellingShingle TC Hydraulic engineering. Ocean engineering
TA Engineering (General). Civil engineering (General)
Azman, Mohd Fadly
Kurian, V.J.
Liew, Mohd Shahir
Base Shear and Collapse Capacity Statistical Analysis
description Abstract— As part of structural reliability assessment, the statistical analysis provides engineers with good estimation of distribution and statistical properties for both load and resistance. This study involved modelling of eight (8) offshore structures with the corresponding environmental conditions for ten (10), fifty (50) and hundred (100) years in order to perform non-linear push over analysis for getting the ultimate strength. The environmental condition covers three main oil and gas regions in Malaysia. The collective results of base shear and collapse capacity were used for statistical analysis. The data were analyzed using probability density function with central limit theorem under Gaussian distribution. All the statistical parameters such as mean value (μ), standard deviation (σ) and variance (V) were calculated. The average base shear from the statistical analysis has been obtained as 3.03 MN with a standard deviation of 3.35 and variance of 11.26. For the resistance part, the mean collapse capacity has been obtained as 18.28 MN with a standard deviation of 18.10 and variance of 327.93. This meant that for general case, the structural resistance is higher than the environmental loading. Using probability density function, the reliability index (β) was estimated through robust calculation between statistical parameters of load and resistance. From this calculation, reliability index (β) has been estimated as 3.97. I
format Conference or Workshop Item
author Azman, Mohd Fadly
Kurian, V.J.
Liew, Mohd Shahir
author_facet Azman, Mohd Fadly
Kurian, V.J.
Liew, Mohd Shahir
author_sort Azman, Mohd Fadly
title Base Shear and Collapse Capacity Statistical Analysis
title_short Base Shear and Collapse Capacity Statistical Analysis
title_full Base Shear and Collapse Capacity Statistical Analysis
title_fullStr Base Shear and Collapse Capacity Statistical Analysis
title_full_unstemmed Base Shear and Collapse Capacity Statistical Analysis
title_sort base shear and collapse capacity statistical analysis
publishDate 2011
url http://eprints.utp.edu.my/6555/1/1569473557_BaseShear_Fadly.pdf
http://eprints.utp.edu.my/6555/
_version_ 1738655498279845888
score 13.214268