Modelling of Neural Network-based MPPT Controller for Wind Turbine Energy System
Wind energy is one of the best renewable energy sources, used for energy generation in modern-day power generation system. Nowadays, wind energy is widely used to power up devices that consume huge power. As wind speed changes rapidly over time, its power generating capacity also varies, this gives...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Article |
Published: |
Springer Science and Business Media Deutschland GmbH
2022
|
Online Access: | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85125278497&doi=10.1007%2f978-981-16-7664-2_35&partnerID=40&md5=267b4e1f741f11b9794919b8f11c9798 http://eprints.utp.edu.my/33772/ |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
my.utp.eprints.33772 |
---|---|
record_format |
eprints |
spelling |
my.utp.eprints.337722022-09-12T08:19:16Z Modelling of Neural Network-based MPPT Controller for Wind Turbine Energy System Karthik, R. Harsh, H. Pavan Kumar, Y.V. John Pradeep, D. Pradeep Reddy, C. Kannan, R. Wind energy is one of the best renewable energy sources, used for energy generation in modern-day power generation system. Nowadays, wind energy is widely used to power up devices that consume huge power. As wind speed changes rapidly over time, its power generating capacity also varies, this gives rise to a need for a controller which controls the power harnessed from the wind energy system. The procedure to achieve maximum power from a renewable energy system is known as maximum power point tracking (MPPT). There are many methods to achieve maximum power from the wind turbine, and in this paper, a neural network-based controller for MPPT is proposed. Firstly, the mathematical model of a wind power turbine system is presented, followed by designing a neural network-based controller to achieve maximum power profile. The influence of the proposed controller on power point tracking is investigated, and the time domain parameters are presented. In this paper, MATLAB/Simulink software is used for the simulating the system and to verify the controller efficacy. © 2022, The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. Springer Science and Business Media Deutschland GmbH 2022 Article NonPeerReviewed https://www.scopus.com/inward/record.uri?eid=2-s2.0-85125278497&doi=10.1007%2f978-981-16-7664-2_35&partnerID=40&md5=267b4e1f741f11b9794919b8f11c9798 Karthik, R. and Harsh, H. and Pavan Kumar, Y.V. and John Pradeep, D. and Pradeep Reddy, C. and Kannan, R. (2022) Modelling of Neural Network-based MPPT Controller for Wind Turbine Energy System. Lecture Notes in Electrical Engineering, 822 . pp. 429-439. http://eprints.utp.edu.my/33772/ |
institution |
Universiti Teknologi Petronas |
building |
UTP Resource Centre |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Teknologi Petronas |
content_source |
UTP Institutional Repository |
url_provider |
http://eprints.utp.edu.my/ |
description |
Wind energy is one of the best renewable energy sources, used for energy generation in modern-day power generation system. Nowadays, wind energy is widely used to power up devices that consume huge power. As wind speed changes rapidly over time, its power generating capacity also varies, this gives rise to a need for a controller which controls the power harnessed from the wind energy system. The procedure to achieve maximum power from a renewable energy system is known as maximum power point tracking (MPPT). There are many methods to achieve maximum power from the wind turbine, and in this paper, a neural network-based controller for MPPT is proposed. Firstly, the mathematical model of a wind power turbine system is presented, followed by designing a neural network-based controller to achieve maximum power profile. The influence of the proposed controller on power point tracking is investigated, and the time domain parameters are presented. In this paper, MATLAB/Simulink software is used for the simulating the system and to verify the controller efficacy. © 2022, The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. |
format |
Article |
author |
Karthik, R. Harsh, H. Pavan Kumar, Y.V. John Pradeep, D. Pradeep Reddy, C. Kannan, R. |
spellingShingle |
Karthik, R. Harsh, H. Pavan Kumar, Y.V. John Pradeep, D. Pradeep Reddy, C. Kannan, R. Modelling of Neural Network-based MPPT Controller for Wind Turbine Energy System |
author_facet |
Karthik, R. Harsh, H. Pavan Kumar, Y.V. John Pradeep, D. Pradeep Reddy, C. Kannan, R. |
author_sort |
Karthik, R. |
title |
Modelling of Neural Network-based MPPT Controller for Wind Turbine Energy System |
title_short |
Modelling of Neural Network-based MPPT Controller for Wind Turbine Energy System |
title_full |
Modelling of Neural Network-based MPPT Controller for Wind Turbine Energy System |
title_fullStr |
Modelling of Neural Network-based MPPT Controller for Wind Turbine Energy System |
title_full_unstemmed |
Modelling of Neural Network-based MPPT Controller for Wind Turbine Energy System |
title_sort |
modelling of neural network-based mppt controller for wind turbine energy system |
publisher |
Springer Science and Business Media Deutschland GmbH |
publishDate |
2022 |
url |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85125278497&doi=10.1007%2f978-981-16-7664-2_35&partnerID=40&md5=267b4e1f741f11b9794919b8f11c9798 http://eprints.utp.edu.my/33772/ |
_version_ |
1744356213983805440 |
score |
13.211869 |