Emerging Solvent Regeneration Technologies for CO2 Capture through Offshore Natural Gas Purification Processes

It is estimated that 40 of natural gas reservoirs in the world are contaminated with acid gases (such as hydrogen sulfide and carbon dioxide), which hinder exploitation activities. The demand for natural gas will increase by 30 from 2020 to 2050, with the rise of industrial activities and the liftin...

Full description

Saved in:
Bibliographic Details
Main Authors: Mohd Pauzi, M.M., Azmi, N., Lau, K.K.
Format: Article
Published: MDPI 2022
Online Access:https://www.scopus.com/inward/record.uri?eid=2-s2.0-85128720639&doi=10.3390%2fsu14074350&partnerID=40&md5=794dcead13cca3318d0b7826e0b02912
http://eprints.utp.edu.my/33563/
Tags: Add Tag
No Tags, Be the first to tag this record!
id my.utp.eprints.33563
record_format eprints
spelling my.utp.eprints.335632022-09-07T08:15:38Z Emerging Solvent Regeneration Technologies for CO2 Capture through Offshore Natural Gas Purification Processes Mohd Pauzi, M.M. Azmi, N. Lau, K.K. It is estimated that 40 of natural gas reservoirs in the world are contaminated with acid gases (such as hydrogen sulfide and carbon dioxide), which hinder exploitation activities. The demand for natural gas will increase by 30 from 2020 to 2050, with the rise of industrial activities and the lifting of travel restrictions. The long-term production of these high acid-gas fields requires mitigation plans, which include carbon capture, utilization, and a storage process to reduce carbon emissions. Absorption is one the most established technologies for CO2 capture, yet it suffers from extensive energy regeneration and footprint requirements in offshore operations. Therefore, the aims of this paper are to review and analyze the recent developments in conventional and emerging solvent regeneration technologies, which include a conventional packed-bed column, membrane contactor, microwave heating, flash drum, rotating packed bed, and ultrasonic irradiation process. The conventional packed column and flash drum are less complex, with minimum maintenance requirements, but suffer from a large footprint. Even though the rotating packed-bed column and microwave heating demonstrate a higher solvent flexibility and process stability, both technologies require regular maintenance and high regeneration energy. Membrane contactor and ultrasonic irradiation absorption systems are compact, but restricted by various operational issues. © 2022 by the authors. Licensee MDPI, Basel, Switzerland. MDPI 2022 Article NonPeerReviewed https://www.scopus.com/inward/record.uri?eid=2-s2.0-85128720639&doi=10.3390%2fsu14074350&partnerID=40&md5=794dcead13cca3318d0b7826e0b02912 Mohd Pauzi, M.M. and Azmi, N. and Lau, K.K. (2022) Emerging Solvent Regeneration Technologies for CO2 Capture through Offshore Natural Gas Purification Processes. Sustainability (Switzerland), 14 (7). http://eprints.utp.edu.my/33563/
institution Universiti Teknologi Petronas
building UTP Resource Centre
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Teknologi Petronas
content_source UTP Institutional Repository
url_provider http://eprints.utp.edu.my/
description It is estimated that 40 of natural gas reservoirs in the world are contaminated with acid gases (such as hydrogen sulfide and carbon dioxide), which hinder exploitation activities. The demand for natural gas will increase by 30 from 2020 to 2050, with the rise of industrial activities and the lifting of travel restrictions. The long-term production of these high acid-gas fields requires mitigation plans, which include carbon capture, utilization, and a storage process to reduce carbon emissions. Absorption is one the most established technologies for CO2 capture, yet it suffers from extensive energy regeneration and footprint requirements in offshore operations. Therefore, the aims of this paper are to review and analyze the recent developments in conventional and emerging solvent regeneration technologies, which include a conventional packed-bed column, membrane contactor, microwave heating, flash drum, rotating packed bed, and ultrasonic irradiation process. The conventional packed column and flash drum are less complex, with minimum maintenance requirements, but suffer from a large footprint. Even though the rotating packed-bed column and microwave heating demonstrate a higher solvent flexibility and process stability, both technologies require regular maintenance and high regeneration energy. Membrane contactor and ultrasonic irradiation absorption systems are compact, but restricted by various operational issues. © 2022 by the authors. Licensee MDPI, Basel, Switzerland.
format Article
author Mohd Pauzi, M.M.
Azmi, N.
Lau, K.K.
spellingShingle Mohd Pauzi, M.M.
Azmi, N.
Lau, K.K.
Emerging Solvent Regeneration Technologies for CO2 Capture through Offshore Natural Gas Purification Processes
author_facet Mohd Pauzi, M.M.
Azmi, N.
Lau, K.K.
author_sort Mohd Pauzi, M.M.
title Emerging Solvent Regeneration Technologies for CO2 Capture through Offshore Natural Gas Purification Processes
title_short Emerging Solvent Regeneration Technologies for CO2 Capture through Offshore Natural Gas Purification Processes
title_full Emerging Solvent Regeneration Technologies for CO2 Capture through Offshore Natural Gas Purification Processes
title_fullStr Emerging Solvent Regeneration Technologies for CO2 Capture through Offshore Natural Gas Purification Processes
title_full_unstemmed Emerging Solvent Regeneration Technologies for CO2 Capture through Offshore Natural Gas Purification Processes
title_sort emerging solvent regeneration technologies for co2 capture through offshore natural gas purification processes
publisher MDPI
publishDate 2022
url https://www.scopus.com/inward/record.uri?eid=2-s2.0-85128720639&doi=10.3390%2fsu14074350&partnerID=40&md5=794dcead13cca3318d0b7826e0b02912
http://eprints.utp.edu.my/33563/
_version_ 1744356185790742528
score 13.211869