Stability of primary emulsion assisted with nanoparticle in emulsion liquid membrane process for zinc extraction

In the present work, primary water-in-oil (W/O) emulsion consisting blended surfactant and nanoparticle is used for the improvement of ELM stability for zinc extraction. The components used in ELM were di-(2-ethylhexyl)phosphoric acid (D2EHPA) and bis(2,4,4-trimethylpentyl)thiophosphinic acid (Cyane...

Full description

Saved in:
Bibliographic Details
Main Authors: Sufi Suliman, S., Othman, N., Fatiha Mohamed Noah, N., Johari, K., Ali, N.
Format: Article
Published: Elsevier Ltd 2022
Online Access:https://www.scopus.com/inward/record.uri?eid=2-s2.0-85131553460&doi=10.1016%2fj.matpr.2022.05.532&partnerID=40&md5=4c9af832b03452848313afce8e83c272
http://eprints.utp.edu.my/33181/
Tags: Add Tag
No Tags, Be the first to tag this record!
id my.utp.eprints.33181
record_format eprints
spelling my.utp.eprints.331812022-07-06T08:05:18Z Stability of primary emulsion assisted with nanoparticle in emulsion liquid membrane process for zinc extraction Sufi Suliman, S. Othman, N. Fatiha Mohamed Noah, N. Johari, K. Ali, N. In the present work, primary water-in-oil (W/O) emulsion consisting blended surfactant and nanoparticle is used for the improvement of ELM stability for zinc extraction. The components used in ELM were di-(2-ethylhexyl)phosphoric acid (D2EHPA) and bis(2,4,4-trimethylpentyl)thiophosphinic acid (Cyanex 302) as a base and synergistic carrier, palm oil as a diluent, sorbitan monooleate (Span 80) and polyoxyethylene sorbitan monooleate (Tween 80) as a surfactant, iron (III) oxide (Fe2O3) as a nanoparticle stabilizer and acidic thiourea as a stripping agent. There are several operating parameters including hydrophilic-lipophilic (HLB) value, mixed surfactant concentration, homogenizer speed as well as nanoparticle concentration were investigated in primary W/O emulsion preparation. The results show that emulsion stability increases up to 88 while droplet diameter decreases by 70 at HLB 8, 5 (w/v) of blended mixture surfactant, 8000 rpm of homogenizer speed and 0.02 (w/v) of nanoparticle concentration at fixed 3 min of emulsification time within 60 min of phase separation. It is expected that the extraction of zinc during the formation of W/O/W emulsion increases as it may offer large surface area for solute pertraction and reduced destabilization phenomenon. Hence, the usage of blended mixture surfactant accompanied by nanoparticle (Fe2O3) in the emulsion making has high potential to enhance the emulsion stability in emulsion liquid membrane process of zinc extraction. © 2022 Elsevier Ltd 2022 Article NonPeerReviewed https://www.scopus.com/inward/record.uri?eid=2-s2.0-85131553460&doi=10.1016%2fj.matpr.2022.05.532&partnerID=40&md5=4c9af832b03452848313afce8e83c272 Sufi Suliman, S. and Othman, N. and Fatiha Mohamed Noah, N. and Johari, K. and Ali, N. (2022) Stability of primary emulsion assisted with nanoparticle in emulsion liquid membrane process for zinc extraction. Materials Today: Proceedings . http://eprints.utp.edu.my/33181/
institution Universiti Teknologi Petronas
building UTP Resource Centre
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Teknologi Petronas
content_source UTP Institutional Repository
url_provider http://eprints.utp.edu.my/
description In the present work, primary water-in-oil (W/O) emulsion consisting blended surfactant and nanoparticle is used for the improvement of ELM stability for zinc extraction. The components used in ELM were di-(2-ethylhexyl)phosphoric acid (D2EHPA) and bis(2,4,4-trimethylpentyl)thiophosphinic acid (Cyanex 302) as a base and synergistic carrier, palm oil as a diluent, sorbitan monooleate (Span 80) and polyoxyethylene sorbitan monooleate (Tween 80) as a surfactant, iron (III) oxide (Fe2O3) as a nanoparticle stabilizer and acidic thiourea as a stripping agent. There are several operating parameters including hydrophilic-lipophilic (HLB) value, mixed surfactant concentration, homogenizer speed as well as nanoparticle concentration were investigated in primary W/O emulsion preparation. The results show that emulsion stability increases up to 88 while droplet diameter decreases by 70 at HLB 8, 5 (w/v) of blended mixture surfactant, 8000 rpm of homogenizer speed and 0.02 (w/v) of nanoparticle concentration at fixed 3 min of emulsification time within 60 min of phase separation. It is expected that the extraction of zinc during the formation of W/O/W emulsion increases as it may offer large surface area for solute pertraction and reduced destabilization phenomenon. Hence, the usage of blended mixture surfactant accompanied by nanoparticle (Fe2O3) in the emulsion making has high potential to enhance the emulsion stability in emulsion liquid membrane process of zinc extraction. © 2022
format Article
author Sufi Suliman, S.
Othman, N.
Fatiha Mohamed Noah, N.
Johari, K.
Ali, N.
spellingShingle Sufi Suliman, S.
Othman, N.
Fatiha Mohamed Noah, N.
Johari, K.
Ali, N.
Stability of primary emulsion assisted with nanoparticle in emulsion liquid membrane process for zinc extraction
author_facet Sufi Suliman, S.
Othman, N.
Fatiha Mohamed Noah, N.
Johari, K.
Ali, N.
author_sort Sufi Suliman, S.
title Stability of primary emulsion assisted with nanoparticle in emulsion liquid membrane process for zinc extraction
title_short Stability of primary emulsion assisted with nanoparticle in emulsion liquid membrane process for zinc extraction
title_full Stability of primary emulsion assisted with nanoparticle in emulsion liquid membrane process for zinc extraction
title_fullStr Stability of primary emulsion assisted with nanoparticle in emulsion liquid membrane process for zinc extraction
title_full_unstemmed Stability of primary emulsion assisted with nanoparticle in emulsion liquid membrane process for zinc extraction
title_sort stability of primary emulsion assisted with nanoparticle in emulsion liquid membrane process for zinc extraction
publisher Elsevier Ltd
publishDate 2022
url https://www.scopus.com/inward/record.uri?eid=2-s2.0-85131553460&doi=10.1016%2fj.matpr.2022.05.532&partnerID=40&md5=4c9af832b03452848313afce8e83c272
http://eprints.utp.edu.my/33181/
_version_ 1738657466562904064
score 13.160551