Perylene based novel mixed matrix membranes with enhanced selective pure and mixed gases (CO2, CH4, and N2) separation

A combination of organic filler exhibiting CO2 philic nature with a polymer to develop mixed matrix membranes (MMMs) can capture CO2 efficiently. This work reports the synthesis of perylene filler and polysulfone (PSf)-based MMMs via solution casting method. The successful incorporation of fillers,...

Full description

Saved in:
Bibliographic Details
Main Authors: Saqib, S., Rafiq, S., Muhammad, N., Khan, A.L., Mukhtar, A., Mellon, N.B., Man, Z., Nawaz, M.H., Jamil, F., Ahmad, N.M.
Format: Article
Published: Elsevier B.V. 2020
Online Access:https://www.scopus.com/inward/record.uri?eid=2-s2.0-85075798500&doi=10.1016%2fj.jngse.2019.103072&partnerID=40&md5=229e144a8fb841e9f5ae6ae974caffe0
http://eprints.utp.edu.my/32434/
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A combination of organic filler exhibiting CO2 philic nature with a polymer to develop mixed matrix membranes (MMMs) can capture CO2 efficiently. This work reports the synthesis of perylene filler and polysulfone (PSf)-based MMMs via solution casting method. The successful incorporation of fillers, uniformity/asymmetric, and amorphous nature of MMMs were investigated by FT-IR, FESEM, and PXRD analysis, respectively. MMMs demonstrated high thermal stability with significant weight retention over 750 °C investigated by TGA analysis. The existence of Lewis's basic functionalities, hydrogen bonding, and �-� bonds between the filler-polymer resulted in the formation of highly CO2 philic structure. Results revealed that the perylene is found to be highly porous (1050 m2/g) and compatible with the PSf to form additional channels, enhancement of free PSf volume and tendency to prevent the agglomeration and non-selective interfacial voids. It demonstrated improved permeabilities of CO2 (138), CH4 (59), and N2 (60) without any significant variation in selectivities CO2/CH4 (3) and CO2/CH4 (7). Similarly, mixed gas permeabilities were improved for (CO2�CH4 � 119) and (CO2�N2 � 116) along with enhanced selectivities (CO2�CH4 � 50) and (CO2�N2 � 46). Furthermore, the influence of temperature on gas permeabilities revealed improved kinetic energy and flexibility in the polymer chains. The mechanical strength analysis revealed high filler-polymer compatibility. These results revealed great potential of MMMs for efficient CO2 separation from pre- and post-combustion sources. © 2019 Elsevier B.V.