Effect of syngas moisture content on the emissions of micro-gas turbine fueled with syngas/LPG in dual fuel mode
Syngas produced by gasification has a potential to be one of the fueling solutions for gas turbines in the future. In addition to the combustible constituents and inert gases, syngas derived by gasification contains a considerable amount of water vapor which effect on syngas combustion behaviour. In...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference or Workshop Item |
Published: |
EDP Sciences
2014
|
Online Access: | https://www.scopus.com/inward/record.uri?eid=2-s2.0-84905010655&doi=10.1051%2fmatecconf%2f20141302012&partnerID=40&md5=b8e7d0f5195e7158a67273f0b273daea http://eprints.utp.edu.my/32249/ |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
my.utp.eprints.32249 |
---|---|
record_format |
eprints |
spelling |
my.utp.eprints.322492022-03-29T05:02:27Z Effect of syngas moisture content on the emissions of micro-gas turbine fueled with syngas/LPG in dual fuel mode Sadig, H. Sulaiman, S.A. Said, M.A. Syngas produced by gasification has a potential to be one of the fueling solutions for gas turbines in the future. In addition to the combustible constituents and inert gases, syngas derived by gasification contains a considerable amount of water vapor which effect on syngas combustion behaviour. In this work, a micro-gas turbine with a thermal capacity of 50 kW was simulated using ASPEN Plus. The micro gas turbine system emissions were characterized using dry syngas fuels with a different composition, syngas 1 (10.53 H 2, 24.94 CO, 2.03 CH4, 12.80 CO2, and 49.70 N2) and syngas 2 (21.62 H2, 32.48 CO, 3.72 CH 4, 19.69 CO2, and 22.49 N2) mixed with LPG in a dual fueling mode. The effect of syngas moisture content was then studied by testing the system with moist syngas/LPG with a moisture content ranging from 0 to 20 by volume. The study demonstrates that the syngas moisture content has high influence on nitrogen oxides and carbon monoxide emissions. It's found that for 5 syngas moisture content, the NOx emission were reduced by 75.5 and 83 for Syngas 1 and Syngas 2 respectively. On carbon monoxide emissions and for same moisture content ratio, the reduction was found to be 43 and 57 for syngas1 and syngas 2 respectively. © 2014 Owned by the authors, published by EDP Sciences. EDP Sciences 2014 Conference or Workshop Item NonPeerReviewed https://www.scopus.com/inward/record.uri?eid=2-s2.0-84905010655&doi=10.1051%2fmatecconf%2f20141302012&partnerID=40&md5=b8e7d0f5195e7158a67273f0b273daea Sadig, H. and Sulaiman, S.A. and Said, M.A. (2014) Effect of syngas moisture content on the emissions of micro-gas turbine fueled with syngas/LPG in dual fuel mode. In: UNSPECIFIED. http://eprints.utp.edu.my/32249/ |
institution |
Universiti Teknologi Petronas |
building |
UTP Resource Centre |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Teknologi Petronas |
content_source |
UTP Institutional Repository |
url_provider |
http://eprints.utp.edu.my/ |
description |
Syngas produced by gasification has a potential to be one of the fueling solutions for gas turbines in the future. In addition to the combustible constituents and inert gases, syngas derived by gasification contains a considerable amount of water vapor which effect on syngas combustion behaviour. In this work, a micro-gas turbine with a thermal capacity of 50 kW was simulated using ASPEN Plus. The micro gas turbine system emissions were characterized using dry syngas fuels with a different composition, syngas 1 (10.53 H 2, 24.94 CO, 2.03 CH4, 12.80 CO2, and 49.70 N2) and syngas 2 (21.62 H2, 32.48 CO, 3.72 CH 4, 19.69 CO2, and 22.49 N2) mixed with LPG in a dual fueling mode. The effect of syngas moisture content was then studied by testing the system with moist syngas/LPG with a moisture content ranging from 0 to 20 by volume. The study demonstrates that the syngas moisture content has high influence on nitrogen oxides and carbon monoxide emissions. It's found that for 5 syngas moisture content, the NOx emission were reduced by 75.5 and 83 for Syngas 1 and Syngas 2 respectively. On carbon monoxide emissions and for same moisture content ratio, the reduction was found to be 43 and 57 for syngas1 and syngas 2 respectively. © 2014 Owned by the authors, published by EDP Sciences. |
format |
Conference or Workshop Item |
author |
Sadig, H. Sulaiman, S.A. Said, M.A. |
spellingShingle |
Sadig, H. Sulaiman, S.A. Said, M.A. Effect of syngas moisture content on the emissions of micro-gas turbine fueled with syngas/LPG in dual fuel mode |
author_facet |
Sadig, H. Sulaiman, S.A. Said, M.A. |
author_sort |
Sadig, H. |
title |
Effect of syngas moisture content on the emissions of micro-gas turbine fueled with syngas/LPG in dual fuel mode |
title_short |
Effect of syngas moisture content on the emissions of micro-gas turbine fueled with syngas/LPG in dual fuel mode |
title_full |
Effect of syngas moisture content on the emissions of micro-gas turbine fueled with syngas/LPG in dual fuel mode |
title_fullStr |
Effect of syngas moisture content on the emissions of micro-gas turbine fueled with syngas/LPG in dual fuel mode |
title_full_unstemmed |
Effect of syngas moisture content on the emissions of micro-gas turbine fueled with syngas/LPG in dual fuel mode |
title_sort |
effect of syngas moisture content on the emissions of micro-gas turbine fueled with syngas/lpg in dual fuel mode |
publisher |
EDP Sciences |
publishDate |
2014 |
url |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84905010655&doi=10.1051%2fmatecconf%2f20141302012&partnerID=40&md5=b8e7d0f5195e7158a67273f0b273daea http://eprints.utp.edu.my/32249/ |
_version_ |
1738657361008001024 |
score |
13.209306 |