Analysis of boiler operational variables prior to tube leakage fault by artificial intelligent system

Steam boilers are considered as a core of any steam power plant. Boilers are subjected to various types of trips leading to shut down of the entire plant. The tube leakage is the worse among the common boiler faults, where the shutdown period lasts for around four to five days. This paper describes...

Full description

Saved in:
Bibliographic Details
Main Authors: Al-Kayiem, H.H., Al-Naimi, F.B.I., Amat, W.N.B.W.
Format: Conference or Workshop Item
Published: EDP Sciences 2014
Online Access:https://www.scopus.com/inward/record.uri?eid=2-s2.0-84905039982&doi=10.1051%2fmatecconf%2f20141305004&partnerID=40&md5=e7d7b18f6793d1e59c922af948d2994c
http://eprints.utp.edu.my/32221/
Tags: Add Tag
No Tags, Be the first to tag this record!
id my.utp.eprints.32221
record_format eprints
spelling my.utp.eprints.322212022-03-29T05:01:51Z Analysis of boiler operational variables prior to tube leakage fault by artificial intelligent system Al-Kayiem, H.H. Al-Naimi, F.B.I. Amat, W.N.B.W. Steam boilers are considered as a core of any steam power plant. Boilers are subjected to various types of trips leading to shut down of the entire plant. The tube leakage is the worse among the common boiler faults, where the shutdown period lasts for around four to five days. This paper describes the rules of the Artificial Intelligent Systems to diagnosis the boiler variables prior to tube leakage occurrence. An Intelligent system based on Artificial Neural Network was designed and coded in MATLAB environment. The ANN was trained and validated using real site data acquired from coal fired power plant in Malaysia. Ninety three boiler operational variables were identified for the present investigation based on the plant operator experience. Various neural networks topology combinations were investigated. The results showed that the NN with two hidden layers performed better than one hidden layer using Levenberg-Maquardt training algorithm. Moreover, it was noticed that hyperbolic tangent function for input and output nodes performed better than other activation function types. © 2014 Owned by the authors, published by EDP Sciences. EDP Sciences 2014 Conference or Workshop Item NonPeerReviewed https://www.scopus.com/inward/record.uri?eid=2-s2.0-84905039982&doi=10.1051%2fmatecconf%2f20141305004&partnerID=40&md5=e7d7b18f6793d1e59c922af948d2994c Al-Kayiem, H.H. and Al-Naimi, F.B.I. and Amat, W.N.B.W. (2014) Analysis of boiler operational variables prior to tube leakage fault by artificial intelligent system. In: UNSPECIFIED. http://eprints.utp.edu.my/32221/
institution Universiti Teknologi Petronas
building UTP Resource Centre
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Teknologi Petronas
content_source UTP Institutional Repository
url_provider http://eprints.utp.edu.my/
description Steam boilers are considered as a core of any steam power plant. Boilers are subjected to various types of trips leading to shut down of the entire plant. The tube leakage is the worse among the common boiler faults, where the shutdown period lasts for around four to five days. This paper describes the rules of the Artificial Intelligent Systems to diagnosis the boiler variables prior to tube leakage occurrence. An Intelligent system based on Artificial Neural Network was designed and coded in MATLAB environment. The ANN was trained and validated using real site data acquired from coal fired power plant in Malaysia. Ninety three boiler operational variables were identified for the present investigation based on the plant operator experience. Various neural networks topology combinations were investigated. The results showed that the NN with two hidden layers performed better than one hidden layer using Levenberg-Maquardt training algorithm. Moreover, it was noticed that hyperbolic tangent function for input and output nodes performed better than other activation function types. © 2014 Owned by the authors, published by EDP Sciences.
format Conference or Workshop Item
author Al-Kayiem, H.H.
Al-Naimi, F.B.I.
Amat, W.N.B.W.
spellingShingle Al-Kayiem, H.H.
Al-Naimi, F.B.I.
Amat, W.N.B.W.
Analysis of boiler operational variables prior to tube leakage fault by artificial intelligent system
author_facet Al-Kayiem, H.H.
Al-Naimi, F.B.I.
Amat, W.N.B.W.
author_sort Al-Kayiem, H.H.
title Analysis of boiler operational variables prior to tube leakage fault by artificial intelligent system
title_short Analysis of boiler operational variables prior to tube leakage fault by artificial intelligent system
title_full Analysis of boiler operational variables prior to tube leakage fault by artificial intelligent system
title_fullStr Analysis of boiler operational variables prior to tube leakage fault by artificial intelligent system
title_full_unstemmed Analysis of boiler operational variables prior to tube leakage fault by artificial intelligent system
title_sort analysis of boiler operational variables prior to tube leakage fault by artificial intelligent system
publisher EDP Sciences
publishDate 2014
url https://www.scopus.com/inward/record.uri?eid=2-s2.0-84905039982&doi=10.1051%2fmatecconf%2f20141305004&partnerID=40&md5=e7d7b18f6793d1e59c922af948d2994c
http://eprints.utp.edu.my/32221/
_version_ 1738657357046480896
score 13.160551