Random Forest Forecast (RFF): One hour ahead jobs in volunteer grid
Short term forecasting is significant operation to forecast the future jobs for computational grids as it can provide a solution for inconsistent resource availability and feasible job scheduling. A job forecasting model is presented to forecast one hour ahead of jobs submitted for computations usin...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference or Workshop Item |
Published: |
Institute of Electrical and Electronics Engineers Inc.
2016
|
Online Access: | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85010422732&doi=10.1109%2fICCOINS.2016.7783223&partnerID=40&md5=a4989bd5cc36c47cb86f01d09a3584c0 http://eprints.utp.edu.my/30489/ |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
my.utp.eprints.30489 |
---|---|
record_format |
eprints |
spelling |
my.utp.eprints.304892022-03-25T06:55:55Z Random Forest Forecast (RFF): One hour ahead jobs in volunteer grid Rubab, S. Hassan, M.F. Mahmood, A.K. Shah, S.N.M. Short term forecasting is significant operation to forecast the future jobs for computational grids as it can provide a solution for inconsistent resource availability and feasible job scheduling. A job forecasting model is presented to forecast one hour ahead of jobs submitted for computations using regression random forests. The training data constitutes the information about the type of job and jobs submitted on average each hour. The forecast model is built on the basis of training process. A real job data set from LCG (Large Hadron Collider Computing Grid) is used for evaluating the proposed forecast model, while considering the fact that jobs submitted are inconsistent. Findings provide a proof that by using proposed method the forecast error can be reduced and the effectiveness of job forecast can be improved for long test periods. © 2016 IEEE. Institute of Electrical and Electronics Engineers Inc. 2016 Conference or Workshop Item NonPeerReviewed https://www.scopus.com/inward/record.uri?eid=2-s2.0-85010422732&doi=10.1109%2fICCOINS.2016.7783223&partnerID=40&md5=a4989bd5cc36c47cb86f01d09a3584c0 Rubab, S. and Hassan, M.F. and Mahmood, A.K. and Shah, S.N.M. (2016) Random Forest Forecast (RFF): One hour ahead jobs in volunteer grid. In: UNSPECIFIED. http://eprints.utp.edu.my/30489/ |
institution |
Universiti Teknologi Petronas |
building |
UTP Resource Centre |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Teknologi Petronas |
content_source |
UTP Institutional Repository |
url_provider |
http://eprints.utp.edu.my/ |
description |
Short term forecasting is significant operation to forecast the future jobs for computational grids as it can provide a solution for inconsistent resource availability and feasible job scheduling. A job forecasting model is presented to forecast one hour ahead of jobs submitted for computations using regression random forests. The training data constitutes the information about the type of job and jobs submitted on average each hour. The forecast model is built on the basis of training process. A real job data set from LCG (Large Hadron Collider Computing Grid) is used for evaluating the proposed forecast model, while considering the fact that jobs submitted are inconsistent. Findings provide a proof that by using proposed method the forecast error can be reduced and the effectiveness of job forecast can be improved for long test periods. © 2016 IEEE. |
format |
Conference or Workshop Item |
author |
Rubab, S. Hassan, M.F. Mahmood, A.K. Shah, S.N.M. |
spellingShingle |
Rubab, S. Hassan, M.F. Mahmood, A.K. Shah, S.N.M. Random Forest Forecast (RFF): One hour ahead jobs in volunteer grid |
author_facet |
Rubab, S. Hassan, M.F. Mahmood, A.K. Shah, S.N.M. |
author_sort |
Rubab, S. |
title |
Random Forest Forecast (RFF): One hour ahead jobs in volunteer grid |
title_short |
Random Forest Forecast (RFF): One hour ahead jobs in volunteer grid |
title_full |
Random Forest Forecast (RFF): One hour ahead jobs in volunteer grid |
title_fullStr |
Random Forest Forecast (RFF): One hour ahead jobs in volunteer grid |
title_full_unstemmed |
Random Forest Forecast (RFF): One hour ahead jobs in volunteer grid |
title_sort |
random forest forecast (rff): one hour ahead jobs in volunteer grid |
publisher |
Institute of Electrical and Electronics Engineers Inc. |
publishDate |
2016 |
url |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85010422732&doi=10.1109%2fICCOINS.2016.7783223&partnerID=40&md5=a4989bd5cc36c47cb86f01d09a3584c0 http://eprints.utp.edu.my/30489/ |
_version_ |
1738657114806550528 |
score |
13.211869 |