Thermo-kinetic study to elucidate the bioenergy potential of Maple Leaf Waste (MLW) by pyrolysis, TGA and kinetic modelling
The present study aims to evaluate the feasibility of Maple Leaf Waste (MLW) for the first time to produce biofuel-bioenergy and chemicals. It is meaningful to understand the thermochemical conversion and degradation pattern of the MLW to evaluate its biofuel-bioenergy potential. Different degradati...
Saved in:
Main Authors: | , , , , , , , , , , |
---|---|
Format: | Article |
Published: |
Elsevier Ltd
2021
|
Online Access: | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85101636207&doi=10.1016%2fj.fuel.2021.120349&partnerID=40&md5=68ce4582bd33d204f29206815b330492 http://eprints.utp.edu.my/30360/ |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
my.utp.eprints.30360 |
---|---|
record_format |
eprints |
spelling |
my.utp.eprints.303602022-03-25T06:44:29Z Thermo-kinetic study to elucidate the bioenergy potential of Maple Leaf Waste (MLW) by pyrolysis, TGA and kinetic modelling Ahmad, M.S. Klemeš, J.J. Alhumade, H. Elkamel, A. Mahmood, A. Shen, B. Ibrahim, M. Mukhtar, A. Saqib, S. Asif, S. Bokhari, A. The present study aims to evaluate the feasibility of Maple Leaf Waste (MLW) for the first time to produce biofuel-bioenergy and chemicals. It is meaningful to understand the thermochemical conversion and degradation pattern of the MLW to evaluate its biofuel-bioenergy potential. Different degradation stages and zones based on temperature and mass loss were identified to understand the pyrolytic behaviour in depth. Four different heating rates were used to conduct kinetic and thermodynamic analysis. The pyrolysis temperature was concluded ranged from 200 °C to 430 °C at all heating rates to obtain maximum bioenergy products. The kinetic parameters of pyrolysis were obtained by analysing through iso-conversional models of Kissinger-Akahira-Sunose (KAS), Friedman and Flynn�Wall�Ozawa (FWO). The average values of activation energies (75�91 kJ mol�1), high heating values (16.32 MJ kg�1), Gibb's free energies (261�269 kJ mol�1) and change in enthalpy (68�85 kJ mol�1) have shown the significant potential for bioenergy production and suitability of co-pyrolysis with other waste and biomass feedstock. © 2021 Elsevier Ltd Elsevier Ltd 2021 Article NonPeerReviewed https://www.scopus.com/inward/record.uri?eid=2-s2.0-85101636207&doi=10.1016%2fj.fuel.2021.120349&partnerID=40&md5=68ce4582bd33d204f29206815b330492 Ahmad, M.S. and Klemeš, J.J. and Alhumade, H. and Elkamel, A. and Mahmood, A. and Shen, B. and Ibrahim, M. and Mukhtar, A. and Saqib, S. and Asif, S. and Bokhari, A. (2021) Thermo-kinetic study to elucidate the bioenergy potential of Maple Leaf Waste (MLW) by pyrolysis, TGA and kinetic modelling. Fuel, 293 . http://eprints.utp.edu.my/30360/ |
institution |
Universiti Teknologi Petronas |
building |
UTP Resource Centre |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Teknologi Petronas |
content_source |
UTP Institutional Repository |
url_provider |
http://eprints.utp.edu.my/ |
description |
The present study aims to evaluate the feasibility of Maple Leaf Waste (MLW) for the first time to produce biofuel-bioenergy and chemicals. It is meaningful to understand the thermochemical conversion and degradation pattern of the MLW to evaluate its biofuel-bioenergy potential. Different degradation stages and zones based on temperature and mass loss were identified to understand the pyrolytic behaviour in depth. Four different heating rates were used to conduct kinetic and thermodynamic analysis. The pyrolysis temperature was concluded ranged from 200 °C to 430 °C at all heating rates to obtain maximum bioenergy products. The kinetic parameters of pyrolysis were obtained by analysing through iso-conversional models of Kissinger-Akahira-Sunose (KAS), Friedman and Flynn�Wall�Ozawa (FWO). The average values of activation energies (75�91 kJ mol�1), high heating values (16.32 MJ kg�1), Gibb's free energies (261�269 kJ mol�1) and change in enthalpy (68�85 kJ mol�1) have shown the significant potential for bioenergy production and suitability of co-pyrolysis with other waste and biomass feedstock. © 2021 Elsevier Ltd |
format |
Article |
author |
Ahmad, M.S. Klemeš, J.J. Alhumade, H. Elkamel, A. Mahmood, A. Shen, B. Ibrahim, M. Mukhtar, A. Saqib, S. Asif, S. Bokhari, A. |
spellingShingle |
Ahmad, M.S. Klemeš, J.J. Alhumade, H. Elkamel, A. Mahmood, A. Shen, B. Ibrahim, M. Mukhtar, A. Saqib, S. Asif, S. Bokhari, A. Thermo-kinetic study to elucidate the bioenergy potential of Maple Leaf Waste (MLW) by pyrolysis, TGA and kinetic modelling |
author_facet |
Ahmad, M.S. Klemeš, J.J. Alhumade, H. Elkamel, A. Mahmood, A. Shen, B. Ibrahim, M. Mukhtar, A. Saqib, S. Asif, S. Bokhari, A. |
author_sort |
Ahmad, M.S. |
title |
Thermo-kinetic study to elucidate the bioenergy potential of Maple Leaf Waste (MLW) by pyrolysis, TGA and kinetic modelling |
title_short |
Thermo-kinetic study to elucidate the bioenergy potential of Maple Leaf Waste (MLW) by pyrolysis, TGA and kinetic modelling |
title_full |
Thermo-kinetic study to elucidate the bioenergy potential of Maple Leaf Waste (MLW) by pyrolysis, TGA and kinetic modelling |
title_fullStr |
Thermo-kinetic study to elucidate the bioenergy potential of Maple Leaf Waste (MLW) by pyrolysis, TGA and kinetic modelling |
title_full_unstemmed |
Thermo-kinetic study to elucidate the bioenergy potential of Maple Leaf Waste (MLW) by pyrolysis, TGA and kinetic modelling |
title_sort |
thermo-kinetic study to elucidate the bioenergy potential of maple leaf waste (mlw) by pyrolysis, tga and kinetic modelling |
publisher |
Elsevier Ltd |
publishDate |
2021 |
url |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85101636207&doi=10.1016%2fj.fuel.2021.120349&partnerID=40&md5=68ce4582bd33d204f29206815b330492 http://eprints.utp.edu.my/30360/ |
_version_ |
1738657096401944576 |
score |
13.214268 |