Miniaturized Spiral UWB transparent wearable flexible antenna for breast cancer detection
A layer of Kapton polyimide with the dielectric constant of 3.5 as substrate and indium tin oxide (ITO) as conductor (10 � 10 � 0. 375 mm3) are used to construct a miniaturized flexible transparent ultrawideband (UWB) antenna. The antenna's performances are investigated and evaluated using an...
Saved in:
Main Authors: | , , , , , , |
---|---|
Format: | Conference or Workshop Item |
Published: |
Institute of Electrical and Electronics Engineers Inc.
2020
|
Online Access: | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85099530728&doi=10.1109%2fISNCC49221.2020.9297255&partnerID=40&md5=a22c9836bc32fdea3720835af14d1411 http://eprints.utp.edu.my/29841/ |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
my.utp.eprints.29841 |
---|---|
record_format |
eprints |
spelling |
my.utp.eprints.298412022-03-25T02:57:19Z Miniaturized Spiral UWB transparent wearable flexible antenna for breast cancer detection Saeidi, T. Mahmood, S.N. Juraiza Ishak, A. Alani, S. Ali, S.M. Ismail, I. Alhawari, A.R.H. A layer of Kapton polyimide with the dielectric constant of 3.5 as substrate and indium tin oxide (ITO) as conductor (10 � 10 � 0. 375 mm3) are used to construct a miniaturized flexible transparent ultrawideband (UWB) antenna. The antenna's performances are investigated and evaluated using an ITO transparent conductor in both frequency and time domain. The proposed antenna achieves the wide bandwidth (BW) of 3.26-23.37 GHz, more than 65 radiation efficiency for most of the working BW, and maximum radiation efficiency of 90 percent at 15 GHz. Besides, it depicts a stable radiation pattern at most of the operating band and a maximum gain of 3.87 dBi. The good agreement between the simulation and measurement results, time-domain considerations, and the reconstructed image of the tumor makes the antenna capable of working in many applications, especially for breast and skin cancer detection. © 2020 IEEE. Institute of Electrical and Electronics Engineers Inc. 2020 Conference or Workshop Item NonPeerReviewed https://www.scopus.com/inward/record.uri?eid=2-s2.0-85099530728&doi=10.1109%2fISNCC49221.2020.9297255&partnerID=40&md5=a22c9836bc32fdea3720835af14d1411 Saeidi, T. and Mahmood, S.N. and Juraiza Ishak, A. and Alani, S. and Ali, S.M. and Ismail, I. and Alhawari, A.R.H. (2020) Miniaturized Spiral UWB transparent wearable flexible antenna for breast cancer detection. In: UNSPECIFIED. http://eprints.utp.edu.my/29841/ |
institution |
Universiti Teknologi Petronas |
building |
UTP Resource Centre |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Teknologi Petronas |
content_source |
UTP Institutional Repository |
url_provider |
http://eprints.utp.edu.my/ |
description |
A layer of Kapton polyimide with the dielectric constant of 3.5 as substrate and indium tin oxide (ITO) as conductor (10 � 10 � 0. 375 mm3) are used to construct a miniaturized flexible transparent ultrawideband (UWB) antenna. The antenna's performances are investigated and evaluated using an ITO transparent conductor in both frequency and time domain. The proposed antenna achieves the wide bandwidth (BW) of 3.26-23.37 GHz, more than 65 radiation efficiency for most of the working BW, and maximum radiation efficiency of 90 percent at 15 GHz. Besides, it depicts a stable radiation pattern at most of the operating band and a maximum gain of 3.87 dBi. The good agreement between the simulation and measurement results, time-domain considerations, and the reconstructed image of the tumor makes the antenna capable of working in many applications, especially for breast and skin cancer detection. © 2020 IEEE. |
format |
Conference or Workshop Item |
author |
Saeidi, T. Mahmood, S.N. Juraiza Ishak, A. Alani, S. Ali, S.M. Ismail, I. Alhawari, A.R.H. |
spellingShingle |
Saeidi, T. Mahmood, S.N. Juraiza Ishak, A. Alani, S. Ali, S.M. Ismail, I. Alhawari, A.R.H. Miniaturized Spiral UWB transparent wearable flexible antenna for breast cancer detection |
author_facet |
Saeidi, T. Mahmood, S.N. Juraiza Ishak, A. Alani, S. Ali, S.M. Ismail, I. Alhawari, A.R.H. |
author_sort |
Saeidi, T. |
title |
Miniaturized Spiral UWB transparent wearable flexible antenna for breast cancer detection |
title_short |
Miniaturized Spiral UWB transparent wearable flexible antenna for breast cancer detection |
title_full |
Miniaturized Spiral UWB transparent wearable flexible antenna for breast cancer detection |
title_fullStr |
Miniaturized Spiral UWB transparent wearable flexible antenna for breast cancer detection |
title_full_unstemmed |
Miniaturized Spiral UWB transparent wearable flexible antenna for breast cancer detection |
title_sort |
miniaturized spiral uwb transparent wearable flexible antenna for breast cancer detection |
publisher |
Institute of Electrical and Electronics Engineers Inc. |
publishDate |
2020 |
url |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85099530728&doi=10.1109%2fISNCC49221.2020.9297255&partnerID=40&md5=a22c9836bc32fdea3720835af14d1411 http://eprints.utp.edu.my/29841/ |
_version_ |
1738657023072927744 |
score |
13.211869 |