Multi-criteria performance evaluation of gridded precipitation and temperature products in data-sparse regions

Inadequate climate data stations often make hydrological modelling a rather challenging task in data-sparse regions. Gridded climate data can be used as an alternative; however, their accuracy in replicating the climatology of the region of interest with low levels of uncertainty is important to wat...

Full description

Saved in:
Bibliographic Details
Main Authors: Lawal, I.M., Bertram, D., White, C.J., Jagaba, A.H., Hassan, I., Shuaibu, A.
Format: Article
Published: MDPI 2021
Online Access:https://www.scopus.com/inward/record.uri?eid=2-s2.0-85121963369&doi=10.3390%2fatmos12121597&partnerID=40&md5=1b920cb52a68a9ab70839e0ab735f808
http://eprints.utp.edu.my/29594/
Tags: Add Tag
No Tags, Be the first to tag this record!
id my.utp.eprints.29594
record_format eprints
spelling my.utp.eprints.295942022-03-25T02:09:59Z Multi-criteria performance evaluation of gridded precipitation and temperature products in data-sparse regions Lawal, I.M. Bertram, D. White, C.J. Jagaba, A.H. Hassan, I. Shuaibu, A. Inadequate climate data stations often make hydrological modelling a rather challenging task in data-sparse regions. Gridded climate data can be used as an alternative; however, their accuracy in replicating the climatology of the region of interest with low levels of uncertainty is important to water resource planning. This study utilised several performance metrics and multi-criteria decision making to assess the performance of the widely used gridded precipitation and temperature data against quality-controlled observed station records in the Lake Chad basin. The study�s findings reveal that the products differ in their quality across the selected performance metrics, although they are especially promising with regards to temperature. However, there are some inherent weaknesses in replicating the observed station data. Princeton University Global Meteorological Forcing precipitation showed the worst performance, with Kling�Gupta efficiency of 0.13�0.50, a mean modified index of agreement of 0.68, and a similarity coefficient SU = 0.365, relative to other products with satisfactory performance across all stations. There were varying degrees of mismatch in unidirectional precipitation and temperature trends, although they were satisfactory in replicating the hydro-climatic information with a low level of uncertainty. Assessment based on multi-criteria decision making revealed that the Climate Research Unit, Global Precipitation Climatology Centre, and Climate Prediction Centre precipitation data and the Climate Research Unit and Princeton University Global Meteorological Forcing temperature data exhibit better performance in terms of similarity, and are recommended for application in hydrological impact studies�especially in the quantification of projected climate hazards and vulnerabilities for better water policy decision making in the Lake Chad basin. © 2021 by the authors. Licensee MDPI, Basel, Switzerland. MDPI 2021 Article NonPeerReviewed https://www.scopus.com/inward/record.uri?eid=2-s2.0-85121963369&doi=10.3390%2fatmos12121597&partnerID=40&md5=1b920cb52a68a9ab70839e0ab735f808 Lawal, I.M. and Bertram, D. and White, C.J. and Jagaba, A.H. and Hassan, I. and Shuaibu, A. (2021) Multi-criteria performance evaluation of gridded precipitation and temperature products in data-sparse regions. Atmosphere, 12 (12). http://eprints.utp.edu.my/29594/
institution Universiti Teknologi Petronas
building UTP Resource Centre
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Teknologi Petronas
content_source UTP Institutional Repository
url_provider http://eprints.utp.edu.my/
description Inadequate climate data stations often make hydrological modelling a rather challenging task in data-sparse regions. Gridded climate data can be used as an alternative; however, their accuracy in replicating the climatology of the region of interest with low levels of uncertainty is important to water resource planning. This study utilised several performance metrics and multi-criteria decision making to assess the performance of the widely used gridded precipitation and temperature data against quality-controlled observed station records in the Lake Chad basin. The study�s findings reveal that the products differ in their quality across the selected performance metrics, although they are especially promising with regards to temperature. However, there are some inherent weaknesses in replicating the observed station data. Princeton University Global Meteorological Forcing precipitation showed the worst performance, with Kling�Gupta efficiency of 0.13�0.50, a mean modified index of agreement of 0.68, and a similarity coefficient SU = 0.365, relative to other products with satisfactory performance across all stations. There were varying degrees of mismatch in unidirectional precipitation and temperature trends, although they were satisfactory in replicating the hydro-climatic information with a low level of uncertainty. Assessment based on multi-criteria decision making revealed that the Climate Research Unit, Global Precipitation Climatology Centre, and Climate Prediction Centre precipitation data and the Climate Research Unit and Princeton University Global Meteorological Forcing temperature data exhibit better performance in terms of similarity, and are recommended for application in hydrological impact studies�especially in the quantification of projected climate hazards and vulnerabilities for better water policy decision making in the Lake Chad basin. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.
format Article
author Lawal, I.M.
Bertram, D.
White, C.J.
Jagaba, A.H.
Hassan, I.
Shuaibu, A.
spellingShingle Lawal, I.M.
Bertram, D.
White, C.J.
Jagaba, A.H.
Hassan, I.
Shuaibu, A.
Multi-criteria performance evaluation of gridded precipitation and temperature products in data-sparse regions
author_facet Lawal, I.M.
Bertram, D.
White, C.J.
Jagaba, A.H.
Hassan, I.
Shuaibu, A.
author_sort Lawal, I.M.
title Multi-criteria performance evaluation of gridded precipitation and temperature products in data-sparse regions
title_short Multi-criteria performance evaluation of gridded precipitation and temperature products in data-sparse regions
title_full Multi-criteria performance evaluation of gridded precipitation and temperature products in data-sparse regions
title_fullStr Multi-criteria performance evaluation of gridded precipitation and temperature products in data-sparse regions
title_full_unstemmed Multi-criteria performance evaluation of gridded precipitation and temperature products in data-sparse regions
title_sort multi-criteria performance evaluation of gridded precipitation and temperature products in data-sparse regions
publisher MDPI
publishDate 2021
url https://www.scopus.com/inward/record.uri?eid=2-s2.0-85121963369&doi=10.3390%2fatmos12121597&partnerID=40&md5=1b920cb52a68a9ab70839e0ab735f808
http://eprints.utp.edu.my/29594/
_version_ 1738656987916271616
score 13.211869