Reconstruction of Chaotic Attractor for Fractional-order Tamaševi�ius System Using Recurrent Neural Networks
In this paper, a forecasting model using recur-rent neural networks (RNN) for reconstructing the chaotic fractional-order Tamaševi�ius system states has been developed. The attractiveness of the proposed model is in the developed relationships between inputs, which are state variables, and outputs...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference or Workshop Item |
Published: |
Institute of Electrical and Electronics Engineers Inc.
2021
|
Online Access: | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85123629486&doi=10.1109%2fANZCC53563.2021.9628225&partnerID=40&md5=f6d9bcd83b5dc265e08eb21e683b536b http://eprints.utp.edu.my/29245/ |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
my.utp.eprints.29245 |
---|---|
record_format |
eprints |
spelling |
my.utp.eprints.292452022-03-25T01:15:34Z Reconstruction of Chaotic Attractor for Fractional-order Tamaševi�ius System Using Recurrent Neural Networks Bingi, K. Devan, P.A.M. Hussin, F.A. In this paper, a forecasting model using recur-rent neural networks (RNN) for reconstructing the chaotic fractional-order Tamaševi�ius system states has been developed. The attractiveness of the proposed model is in the developed relationships between inputs, which are state variables, and outputs, which are the change in state variables for accurate prediction. The results from the proposed model show the best prediction ability for all three output variables with the highest R2 and the least mean square errors. The proposed forecasting model also performs best in reconstructing all three system states with minimal mean square errors. © 2021 IEEE. Institute of Electrical and Electronics Engineers Inc. 2021 Conference or Workshop Item NonPeerReviewed https://www.scopus.com/inward/record.uri?eid=2-s2.0-85123629486&doi=10.1109%2fANZCC53563.2021.9628225&partnerID=40&md5=f6d9bcd83b5dc265e08eb21e683b536b Bingi, K. and Devan, P.A.M. and Hussin, F.A. (2021) Reconstruction of Chaotic Attractor for Fractional-order Tamaševi�ius System Using Recurrent Neural Networks. In: UNSPECIFIED. http://eprints.utp.edu.my/29245/ |
institution |
Universiti Teknologi Petronas |
building |
UTP Resource Centre |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Teknologi Petronas |
content_source |
UTP Institutional Repository |
url_provider |
http://eprints.utp.edu.my/ |
description |
In this paper, a forecasting model using recur-rent neural networks (RNN) for reconstructing the chaotic fractional-order Tamaševi�ius system states has been developed. The attractiveness of the proposed model is in the developed relationships between inputs, which are state variables, and outputs, which are the change in state variables for accurate prediction. The results from the proposed model show the best prediction ability for all three output variables with the highest R2 and the least mean square errors. The proposed forecasting model also performs best in reconstructing all three system states with minimal mean square errors. © 2021 IEEE. |
format |
Conference or Workshop Item |
author |
Bingi, K. Devan, P.A.M. Hussin, F.A. |
spellingShingle |
Bingi, K. Devan, P.A.M. Hussin, F.A. Reconstruction of Chaotic Attractor for Fractional-order Tamaševi�ius System Using Recurrent Neural Networks |
author_facet |
Bingi, K. Devan, P.A.M. Hussin, F.A. |
author_sort |
Bingi, K. |
title |
Reconstruction of Chaotic Attractor for Fractional-order Tamaševi�ius System Using Recurrent Neural Networks |
title_short |
Reconstruction of Chaotic Attractor for Fractional-order Tamaševi�ius System Using Recurrent Neural Networks |
title_full |
Reconstruction of Chaotic Attractor for Fractional-order Tamaševi�ius System Using Recurrent Neural Networks |
title_fullStr |
Reconstruction of Chaotic Attractor for Fractional-order Tamaševi�ius System Using Recurrent Neural Networks |
title_full_unstemmed |
Reconstruction of Chaotic Attractor for Fractional-order Tamaševi�ius System Using Recurrent Neural Networks |
title_sort |
reconstruction of chaotic attractor for fractional-order tamaå¡eviä�ius system using recurrent neural networks |
publisher |
Institute of Electrical and Electronics Engineers Inc. |
publishDate |
2021 |
url |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85123629486&doi=10.1109%2fANZCC53563.2021.9628225&partnerID=40&md5=f6d9bcd83b5dc265e08eb21e683b536b http://eprints.utp.edu.my/29245/ |
_version_ |
1738656938454941696 |
score |
13.211869 |