Predicting the ultimate axial capacity of uniaxially loaded cfst columns using multiphysics artificial intelligence

The object of this research is concrete-filled steel tubes (CFST). The article aimed to develop a prediction Multiphysics model for the circular CFST column by using the Artificial Neural Network (ANN), the Adaptive Neuro-Fuzzy Inference System (ANFIS) and the Gene Expression Program (GEP). The data...

Full description

Saved in:
Bibliographic Details
Main Authors: Khan, S., Khan, M.A., Zafar, A., Javed, M.F., Aslam, F., Musarat, M.A., Vatin, N.I.
Format: Article
Published: MDPI 2022
Online Access:https://www.scopus.com/inward/record.uri?eid=2-s2.0-85121715454&doi=10.3390%2fma15010039&partnerID=40&md5=fa579baf45c28583aa70785da293bd1b
http://eprints.utp.edu.my/28911/
Tags: Add Tag
No Tags, Be the first to tag this record!
Be the first to leave a comment!
You must be logged in first