Hybrid ABFA-APSO Algorithm
The aim of this chapter is to propose improvement to the adaptation of bacterial foraging algorithm (BFA) and to hybridize it with accelerated particle swarm optimization (APSO) in order to accelerate its convergence. In the proposed algorithm, the random walk in the chemotaxis stage of the ABFA is...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Article |
Published: |
Springer
2020
|
Online Access: | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85085220140&doi=10.1007%2f978-3-030-47737-0_5&partnerID=40&md5=3caee760e8a0a4d29eddc6cba19a1bc5 http://eprints.utp.edu.my/24787/ |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
my.utp.eprints.24787 |
---|---|
record_format |
eprints |
spelling |
my.utp.eprints.247872021-08-27T06:27:05Z Hybrid ABFA-APSO Algorithm Hassan, S.M. Ibrahim, R. Saad, N. Bingi, K. Asirvadam, V.S. The aim of this chapter is to propose improvement to the adaptation of bacterial foraging algorithm (BFA) and to hybridize it with accelerated particle swarm optimization (APSO) in order to accelerate its convergence. In the proposed algorithm, the random walk in the chemotaxis stage of the ABFA is updated through the velocity equation of the APSO. © 2020, Springer Nature Switzerland AG. Springer 2020 Article NonPeerReviewed https://www.scopus.com/inward/record.uri?eid=2-s2.0-85085220140&doi=10.1007%2f978-3-030-47737-0_5&partnerID=40&md5=3caee760e8a0a4d29eddc6cba19a1bc5 Hassan, S.M. and Ibrahim, R. and Saad, N. and Bingi, K. and Asirvadam, V.S. (2020) Hybrid ABFA-APSO Algorithm. Studies in Systems, Decision and Control, 293 . pp. 121-140. http://eprints.utp.edu.my/24787/ |
institution |
Universiti Teknologi Petronas |
building |
UTP Resource Centre |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Teknologi Petronas |
content_source |
UTP Institutional Repository |
url_provider |
http://eprints.utp.edu.my/ |
description |
The aim of this chapter is to propose improvement to the adaptation of bacterial foraging algorithm (BFA) and to hybridize it with accelerated particle swarm optimization (APSO) in order to accelerate its convergence. In the proposed algorithm, the random walk in the chemotaxis stage of the ABFA is updated through the velocity equation of the APSO. © 2020, Springer Nature Switzerland AG. |
format |
Article |
author |
Hassan, S.M. Ibrahim, R. Saad, N. Bingi, K. Asirvadam, V.S. |
spellingShingle |
Hassan, S.M. Ibrahim, R. Saad, N. Bingi, K. Asirvadam, V.S. Hybrid ABFA-APSO Algorithm |
author_facet |
Hassan, S.M. Ibrahim, R. Saad, N. Bingi, K. Asirvadam, V.S. |
author_sort |
Hassan, S.M. |
title |
Hybrid ABFA-APSO Algorithm |
title_short |
Hybrid ABFA-APSO Algorithm |
title_full |
Hybrid ABFA-APSO Algorithm |
title_fullStr |
Hybrid ABFA-APSO Algorithm |
title_full_unstemmed |
Hybrid ABFA-APSO Algorithm |
title_sort |
hybrid abfa-apso algorithm |
publisher |
Springer |
publishDate |
2020 |
url |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85085220140&doi=10.1007%2f978-3-030-47737-0_5&partnerID=40&md5=3caee760e8a0a4d29eddc6cba19a1bc5 http://eprints.utp.edu.my/24787/ |
_version_ |
1738656639318228992 |
score |
13.209306 |