Machine learning model to predict the contact of angle using mineralogy, TOC and process parameters in shale
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference or Workshop Item |
Published: |
European Association of Geoscientists and Engineers, EAGE
2021
|
Online Access: | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85111074226&doi=10.3997%2f2214-4609.202171009&partnerID=40&md5=c18a347bae53151fc765613596b5e658 http://eprints.utp.edu.my/23995/ |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
my.utp.eprints.23995 |
---|---|
record_format |
eprints |
spelling |
my.utp.eprints.239952021-08-19T14:59:29Z Machine learning model to predict the contact of angle using mineralogy, TOC and process parameters in shale Ameenuddin Irfan, S. Fadhli, M.Z. Padmanabhan, E. European Association of Geoscientists and Engineers, EAGE 2021 Conference or Workshop Item NonPeerReviewed https://www.scopus.com/inward/record.uri?eid=2-s2.0-85111074226&doi=10.3997%2f2214-4609.202171009&partnerID=40&md5=c18a347bae53151fc765613596b5e658 Ameenuddin Irfan, S. and Fadhli, M.Z. and Padmanabhan, E. (2021) Machine learning model to predict the contact of angle using mineralogy, TOC and process parameters in shale. In: UNSPECIFIED. http://eprints.utp.edu.my/23995/ |
institution |
Universiti Teknologi Petronas |
building |
UTP Resource Centre |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Teknologi Petronas |
content_source |
UTP Institutional Repository |
url_provider |
http://eprints.utp.edu.my/ |
format |
Conference or Workshop Item |
author |
Ameenuddin Irfan, S. Fadhli, M.Z. Padmanabhan, E. |
spellingShingle |
Ameenuddin Irfan, S. Fadhli, M.Z. Padmanabhan, E. Machine learning model to predict the contact of angle using mineralogy, TOC and process parameters in shale |
author_facet |
Ameenuddin Irfan, S. Fadhli, M.Z. Padmanabhan, E. |
author_sort |
Ameenuddin Irfan, S. |
title |
Machine learning model to predict the contact of angle using mineralogy, TOC and process parameters in shale |
title_short |
Machine learning model to predict the contact of angle using mineralogy, TOC and process parameters in shale |
title_full |
Machine learning model to predict the contact of angle using mineralogy, TOC and process parameters in shale |
title_fullStr |
Machine learning model to predict the contact of angle using mineralogy, TOC and process parameters in shale |
title_full_unstemmed |
Machine learning model to predict the contact of angle using mineralogy, TOC and process parameters in shale |
title_sort |
machine learning model to predict the contact of angle using mineralogy, toc and process parameters in shale |
publisher |
European Association of Geoscientists and Engineers, EAGE |
publishDate |
2021 |
url |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85111074226&doi=10.3997%2f2214-4609.202171009&partnerID=40&md5=c18a347bae53151fc765613596b5e658 http://eprints.utp.edu.my/23995/ |
_version_ |
1738656551110967296 |
score |
13.214268 |