Durability performance of high volume fly ash roller compacted concrete pavement containing crumb rubber and nano silica

This study investigated the effect of a hybrid of crumb rubber and nano silica on the durability performance (Porosity and Permeability) and skid resistance of high volume fly ash (HVFA) roller compacted concrete (RCC) pavement. The HVFA RCC pavement was developed with 50 cement by volume replaced u...

Full description

Saved in:
Bibliographic Details
Main Authors: Adamu, M., Mohammed, B.S., Shafiq, N., Liew, M.S.
Format: Article
Published: Taylor and Francis Ltd. 2020
Online Access:https://www.scopus.com/inward/record.uri?eid=2-s2.0-85057265788&doi=10.1080%2f10298436.2018.1547825&partnerID=40&md5=af15ac459e7c71875d933111ec540266
http://eprints.utp.edu.my/23136/
Tags: Add Tag
No Tags, Be the first to tag this record!
id my.utp.eprints.23136
record_format eprints
spelling my.utp.eprints.231362021-08-19T05:35:39Z Durability performance of high volume fly ash roller compacted concrete pavement containing crumb rubber and nano silica Adamu, M. Mohammed, B.S. Shafiq, N. Liew, M.S. This study investigated the effect of a hybrid of crumb rubber and nano silica on the durability performance (Porosity and Permeability) and skid resistance of high volume fly ash (HVFA) roller compacted concrete (RCC) pavement. The HVFA RCC pavement was developed with 50 cement by volume replaced using fly ash. Crumb rubber was used to partially replace fine aggregate at varying percentages, i.e. 0, 10, 20, and 30 by volume replacement. Nano silica was added by weight of cementitious materials at variations of 0, 1, 2, and 3. The Vebe consistency, water absorption, and mercury intrusion porosimetry were used to measure the consistency, permeability, and porosity of the HVFA RCC pavement, respectively. The skid resistance was measured in terms of the British Pendulum Number (BPN) using the British Pendulum Tester (BPT). The result findings showed that the HVFA increased the consistency, rate of water absorption, and porosity of the RCC pavement. Furthermore, the consistency, water absorption, and porosity of the HVFA RCC pavement increased with an increase in the partial replacement of the fine aggregate with crumb rubber. On the contrary, the addition of nano silica decreased the consistency, rate of water absorption, and porosity of the HVFA RCC pavement. This was due to the larger surface area, finer size, and physiochemical reaction of the nano silica which resulted in pore structure refinement in the hardened matrix of the HVFA RCC pavement by filling the voids within the interconnected pores thereby breaking the interconnectivity and reducing its diameter. The results of the skid resistance showed that incorporation of 10 crumb rubber as the replacement to fine aggregate and addition of up to 2 nano silica by weight of cementitious materials increased the skid resistance of the HVFA RCC pavement. © 2018 Informa UK Limited, trading as Taylor & Francis Group. Taylor and Francis Ltd. 2020 Article NonPeerReviewed https://www.scopus.com/inward/record.uri?eid=2-s2.0-85057265788&doi=10.1080%2f10298436.2018.1547825&partnerID=40&md5=af15ac459e7c71875d933111ec540266 Adamu, M. and Mohammed, B.S. and Shafiq, N. and Liew, M.S. (2020) Durability performance of high volume fly ash roller compacted concrete pavement containing crumb rubber and nano silica. International Journal of Pavement Engineering, 21 (12). pp. 1437-1444. http://eprints.utp.edu.my/23136/
institution Universiti Teknologi Petronas
building UTP Resource Centre
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Teknologi Petronas
content_source UTP Institutional Repository
url_provider http://eprints.utp.edu.my/
description This study investigated the effect of a hybrid of crumb rubber and nano silica on the durability performance (Porosity and Permeability) and skid resistance of high volume fly ash (HVFA) roller compacted concrete (RCC) pavement. The HVFA RCC pavement was developed with 50 cement by volume replaced using fly ash. Crumb rubber was used to partially replace fine aggregate at varying percentages, i.e. 0, 10, 20, and 30 by volume replacement. Nano silica was added by weight of cementitious materials at variations of 0, 1, 2, and 3. The Vebe consistency, water absorption, and mercury intrusion porosimetry were used to measure the consistency, permeability, and porosity of the HVFA RCC pavement, respectively. The skid resistance was measured in terms of the British Pendulum Number (BPN) using the British Pendulum Tester (BPT). The result findings showed that the HVFA increased the consistency, rate of water absorption, and porosity of the RCC pavement. Furthermore, the consistency, water absorption, and porosity of the HVFA RCC pavement increased with an increase in the partial replacement of the fine aggregate with crumb rubber. On the contrary, the addition of nano silica decreased the consistency, rate of water absorption, and porosity of the HVFA RCC pavement. This was due to the larger surface area, finer size, and physiochemical reaction of the nano silica which resulted in pore structure refinement in the hardened matrix of the HVFA RCC pavement by filling the voids within the interconnected pores thereby breaking the interconnectivity and reducing its diameter. The results of the skid resistance showed that incorporation of 10 crumb rubber as the replacement to fine aggregate and addition of up to 2 nano silica by weight of cementitious materials increased the skid resistance of the HVFA RCC pavement. © 2018 Informa UK Limited, trading as Taylor & Francis Group.
format Article
author Adamu, M.
Mohammed, B.S.
Shafiq, N.
Liew, M.S.
spellingShingle Adamu, M.
Mohammed, B.S.
Shafiq, N.
Liew, M.S.
Durability performance of high volume fly ash roller compacted concrete pavement containing crumb rubber and nano silica
author_facet Adamu, M.
Mohammed, B.S.
Shafiq, N.
Liew, M.S.
author_sort Adamu, M.
title Durability performance of high volume fly ash roller compacted concrete pavement containing crumb rubber and nano silica
title_short Durability performance of high volume fly ash roller compacted concrete pavement containing crumb rubber and nano silica
title_full Durability performance of high volume fly ash roller compacted concrete pavement containing crumb rubber and nano silica
title_fullStr Durability performance of high volume fly ash roller compacted concrete pavement containing crumb rubber and nano silica
title_full_unstemmed Durability performance of high volume fly ash roller compacted concrete pavement containing crumb rubber and nano silica
title_sort durability performance of high volume fly ash roller compacted concrete pavement containing crumb rubber and nano silica
publisher Taylor and Francis Ltd.
publishDate 2020
url https://www.scopus.com/inward/record.uri?eid=2-s2.0-85057265788&doi=10.1080%2f10298436.2018.1547825&partnerID=40&md5=af15ac459e7c71875d933111ec540266
http://eprints.utp.edu.my/23136/
_version_ 1738656429260144640
score 13.211869