Photocatalytic degradation of phenol wastewater over Z-scheme g-C 3 N 4 /CNT/BiVO 4 heterostructure photocatalyst under solar light irradiation

A series of carbon nanotubes (CNT) modified g-C 3 N 4 /BiVO 4 photocatalysts were synthesized via wet-impregnation method and evaluated via degradation of phenol under solar light irradiation. The physicochemical properties of the as-developed photocatalyst were characterized using FTIR, XRD, FESEM,...

Full description

Saved in:
Bibliographic Details
Main Authors: Samsudin, M.F.R., Bacho, N., Sufian, S., Ng, Y.H.
Format: Article
Published: 2019
Online Access:https://www.scopus.com/inward/record.uri?eid=2-s2.0-85059870098&doi=10.1016%2fj.molliq.2018.10.160&partnerID=40&md5=5f192fa8029843e4915252f5b9b660f7
http://eprints.utp.edu.my/22119/
Tags: Add Tag
No Tags, Be the first to tag this record!
id my.utp.eprints.22119
record_format eprints
spelling my.utp.eprints.221192019-02-28T07:57:03Z Photocatalytic degradation of phenol wastewater over Z-scheme g-C 3 N 4 /CNT/BiVO 4 heterostructure photocatalyst under solar light irradiation Samsudin, M.F.R. Bacho, N. Sufian, S. Ng, Y.H. A series of carbon nanotubes (CNT) modified g-C 3 N 4 /BiVO 4 photocatalysts were synthesized via wet-impregnation method and evaluated via degradation of phenol under solar light irradiation. The physicochemical properties of the as-developed photocatalyst were characterized using FTIR, XRD, FESEM, XPS, SAP and DR-UV Vis. The formation of g-C 3 N 4 /CNT/BiVO 4 photocatalysts resulted in remarkable enhancement in the performance in which almost six times higher degradation rate in comparison to the pristine g-C 3 N 4 and obeyed the pseudo-first-order kinetics and Temkin adsorption model. Congruously, the synergistic interaction between 2 wt of CNT and 5 vol of H 2 O 2 as an oxidizing agent was capable of removing 80.6 of phenol within 120 min. The profound photodegradation performance monitored was attributed to the better crystallinity structure obtained as shown in XRD and XPS analysis. Furthermore, the intimate contact between the CNT, g-C 3 N 4 and BiVO 4 in the heterostructure sample as shown in FESEM micrograph images does help in allowing a smooth electron-hole pair separation and migration, resulting in more available �OH and �O 2 ¯ radicals for photocatalytic degradation activities. The possible Z-scheme reaction mechanism has been proposed and active species trapping experiments have been carried out to find the role of active radical species responsible for the phenol degradation. Additionally, the g-C 3 N 4 /CNT/BiVO 4 photocatalysts retained excellent stability even after several cycles. Congruently, a mathematical representation for understanding the interaction between CNT loading and H 2 O 2 for photodegradation of phenol using response surface methodology (RSM) was successfully generated. © 2018 Elsevier B.V. 2019 Article NonPeerReviewed https://www.scopus.com/inward/record.uri?eid=2-s2.0-85059870098&doi=10.1016%2fj.molliq.2018.10.160&partnerID=40&md5=5f192fa8029843e4915252f5b9b660f7 Samsudin, M.F.R. and Bacho, N. and Sufian, S. and Ng, Y.H. (2019) Photocatalytic degradation of phenol wastewater over Z-scheme g-C 3 N 4 /CNT/BiVO 4 heterostructure photocatalyst under solar light irradiation. Journal of Molecular Liquids, 277 . pp. 977-988. http://eprints.utp.edu.my/22119/
institution Universiti Teknologi Petronas
building UTP Resource Centre
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Teknologi Petronas
content_source UTP Institutional Repository
url_provider http://eprints.utp.edu.my/
description A series of carbon nanotubes (CNT) modified g-C 3 N 4 /BiVO 4 photocatalysts were synthesized via wet-impregnation method and evaluated via degradation of phenol under solar light irradiation. The physicochemical properties of the as-developed photocatalyst were characterized using FTIR, XRD, FESEM, XPS, SAP and DR-UV Vis. The formation of g-C 3 N 4 /CNT/BiVO 4 photocatalysts resulted in remarkable enhancement in the performance in which almost six times higher degradation rate in comparison to the pristine g-C 3 N 4 and obeyed the pseudo-first-order kinetics and Temkin adsorption model. Congruously, the synergistic interaction between 2 wt of CNT and 5 vol of H 2 O 2 as an oxidizing agent was capable of removing 80.6 of phenol within 120 min. The profound photodegradation performance monitored was attributed to the better crystallinity structure obtained as shown in XRD and XPS analysis. Furthermore, the intimate contact between the CNT, g-C 3 N 4 and BiVO 4 in the heterostructure sample as shown in FESEM micrograph images does help in allowing a smooth electron-hole pair separation and migration, resulting in more available �OH and �O 2 ¯ radicals for photocatalytic degradation activities. The possible Z-scheme reaction mechanism has been proposed and active species trapping experiments have been carried out to find the role of active radical species responsible for the phenol degradation. Additionally, the g-C 3 N 4 /CNT/BiVO 4 photocatalysts retained excellent stability even after several cycles. Congruently, a mathematical representation for understanding the interaction between CNT loading and H 2 O 2 for photodegradation of phenol using response surface methodology (RSM) was successfully generated. © 2018 Elsevier B.V.
format Article
author Samsudin, M.F.R.
Bacho, N.
Sufian, S.
Ng, Y.H.
spellingShingle Samsudin, M.F.R.
Bacho, N.
Sufian, S.
Ng, Y.H.
Photocatalytic degradation of phenol wastewater over Z-scheme g-C 3 N 4 /CNT/BiVO 4 heterostructure photocatalyst under solar light irradiation
author_facet Samsudin, M.F.R.
Bacho, N.
Sufian, S.
Ng, Y.H.
author_sort Samsudin, M.F.R.
title Photocatalytic degradation of phenol wastewater over Z-scheme g-C 3 N 4 /CNT/BiVO 4 heterostructure photocatalyst under solar light irradiation
title_short Photocatalytic degradation of phenol wastewater over Z-scheme g-C 3 N 4 /CNT/BiVO 4 heterostructure photocatalyst under solar light irradiation
title_full Photocatalytic degradation of phenol wastewater over Z-scheme g-C 3 N 4 /CNT/BiVO 4 heterostructure photocatalyst under solar light irradiation
title_fullStr Photocatalytic degradation of phenol wastewater over Z-scheme g-C 3 N 4 /CNT/BiVO 4 heterostructure photocatalyst under solar light irradiation
title_full_unstemmed Photocatalytic degradation of phenol wastewater over Z-scheme g-C 3 N 4 /CNT/BiVO 4 heterostructure photocatalyst under solar light irradiation
title_sort photocatalytic degradation of phenol wastewater over z-scheme g-c 3 n 4 /cnt/bivo 4 heterostructure photocatalyst under solar light irradiation
publishDate 2019
url https://www.scopus.com/inward/record.uri?eid=2-s2.0-85059870098&doi=10.1016%2fj.molliq.2018.10.160&partnerID=40&md5=5f192fa8029843e4915252f5b9b660f7
http://eprints.utp.edu.my/22119/
_version_ 1738656380765601792
score 13.211869