The Influence of shales characteristics on CO2 adsorption behaviour under sub-critical conditions

Shale gas has been an important source of natural gas and is expected to contribute 30 towards the global output by 2040. Shale formations also have CO2 sequestration potential, which could be used to mitigate the greenhouse gas emissions. A quarter of Malaysian's sedimentary comprises of black...

Full description

Saved in:
Bibliographic Details
Main Authors: Al-Mutarreb, A.M., Jufar, S.R., Abdulelah, H., Padmanabhan, E., Mostafa, G., Ahmed, M.
Format: Article
Published: Institute of Physics Publishing 2018
Online Access:https://www.scopus.com/inward/record.uri?eid=2-s2.0-85050015267&doi=10.1088%2f1755-1315%2f164%2f1%2f012031&partnerID=40&md5=a8609722f293afe96c7e414436cc823d
http://eprints.utp.edu.my/20838/
Tags: Add Tag
No Tags, Be the first to tag this record!
id my.utp.eprints.20838
record_format eprints
spelling my.utp.eprints.208382019-02-26T02:27:37Z The Influence of shales characteristics on CO2 adsorption behaviour under sub-critical conditions Al-Mutarreb, A.M. Jufar, S.R. Abdulelah, H. Padmanabhan, E. Mostafa, G. Ahmed, M. Shale gas has been an important source of natural gas and is expected to contribute 30 towards the global output by 2040. Shale formations also have CO2 sequestration potential, which could be used to mitigate the greenhouse gas emissions. A quarter of Malaysian's sedimentary comprises of black shale formations. In this article, we evaluated the CO2 sequestration potential of some of Malaysian's formation under sub-critical conditions, and we correlate shale's characteristics to CO2 storage behaviour under sub-critical conditions. The evaluation is based on total organic carbon (TOC wt. ) contents, mineralogical compositions, particle size distribution PSD of mesopores and micropores. The results show that total organic carbon measured by TOC analyser ranges between 0.5wt. to 12.1wt. Bulk mineralogical composition was semi-quantified using X-ray Diffraction (XRD). Non-clay composition varies between �35 wt. to �75 wt. , which is dominated by quartz. All samples also contain clay minerals such as kaolinite and illite at different range. The CO2 adsorption isotherm results show that KH sample adsorb the most while in contrast the KL samples adsorb the least of CO2. Positive correlation between organic content and CO2 adsorption was observed in most samples, indicating that formations with high organic content has higher CO2 sequestration potential. Mineralogical composition also influence the CO2 adsorption, for instance, illite has lower surface area and pore volume compare with some other clays, subsequently, its presence reduced the CO2 storage potential on KL sample. However, the application of this observation may not fit to other formations due to the high degree of heterogeneity of shale formations. © Published under licence by IOP Publishing Ltd. Institute of Physics Publishing 2018 Article NonPeerReviewed https://www.scopus.com/inward/record.uri?eid=2-s2.0-85050015267&doi=10.1088%2f1755-1315%2f164%2f1%2f012031&partnerID=40&md5=a8609722f293afe96c7e414436cc823d Al-Mutarreb, A.M. and Jufar, S.R. and Abdulelah, H. and Padmanabhan, E. and Mostafa, G. and Ahmed, M. (2018) The Influence of shales characteristics on CO2 adsorption behaviour under sub-critical conditions. IOP Conference Series: Earth and Environmental Science, 164 (1). http://eprints.utp.edu.my/20838/
institution Universiti Teknologi Petronas
building UTP Resource Centre
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Teknologi Petronas
content_source UTP Institutional Repository
url_provider http://eprints.utp.edu.my/
description Shale gas has been an important source of natural gas and is expected to contribute 30 towards the global output by 2040. Shale formations also have CO2 sequestration potential, which could be used to mitigate the greenhouse gas emissions. A quarter of Malaysian's sedimentary comprises of black shale formations. In this article, we evaluated the CO2 sequestration potential of some of Malaysian's formation under sub-critical conditions, and we correlate shale's characteristics to CO2 storage behaviour under sub-critical conditions. The evaluation is based on total organic carbon (TOC wt. ) contents, mineralogical compositions, particle size distribution PSD of mesopores and micropores. The results show that total organic carbon measured by TOC analyser ranges between 0.5wt. to 12.1wt. Bulk mineralogical composition was semi-quantified using X-ray Diffraction (XRD). Non-clay composition varies between �35 wt. to �75 wt. , which is dominated by quartz. All samples also contain clay minerals such as kaolinite and illite at different range. The CO2 adsorption isotherm results show that KH sample adsorb the most while in contrast the KL samples adsorb the least of CO2. Positive correlation between organic content and CO2 adsorption was observed in most samples, indicating that formations with high organic content has higher CO2 sequestration potential. Mineralogical composition also influence the CO2 adsorption, for instance, illite has lower surface area and pore volume compare with some other clays, subsequently, its presence reduced the CO2 storage potential on KL sample. However, the application of this observation may not fit to other formations due to the high degree of heterogeneity of shale formations. © Published under licence by IOP Publishing Ltd.
format Article
author Al-Mutarreb, A.M.
Jufar, S.R.
Abdulelah, H.
Padmanabhan, E.
Mostafa, G.
Ahmed, M.
spellingShingle Al-Mutarreb, A.M.
Jufar, S.R.
Abdulelah, H.
Padmanabhan, E.
Mostafa, G.
Ahmed, M.
The Influence of shales characteristics on CO2 adsorption behaviour under sub-critical conditions
author_facet Al-Mutarreb, A.M.
Jufar, S.R.
Abdulelah, H.
Padmanabhan, E.
Mostafa, G.
Ahmed, M.
author_sort Al-Mutarreb, A.M.
title The Influence of shales characteristics on CO2 adsorption behaviour under sub-critical conditions
title_short The Influence of shales characteristics on CO2 adsorption behaviour under sub-critical conditions
title_full The Influence of shales characteristics on CO2 adsorption behaviour under sub-critical conditions
title_fullStr The Influence of shales characteristics on CO2 adsorption behaviour under sub-critical conditions
title_full_unstemmed The Influence of shales characteristics on CO2 adsorption behaviour under sub-critical conditions
title_sort influence of shales characteristics on co2 adsorption behaviour under sub-critical conditions
publisher Institute of Physics Publishing
publishDate 2018
url https://www.scopus.com/inward/record.uri?eid=2-s2.0-85050015267&doi=10.1088%2f1755-1315%2f164%2f1%2f012031&partnerID=40&md5=a8609722f293afe96c7e414436cc823d
http://eprints.utp.edu.my/20838/
_version_ 1738656239924019200
score 13.160551