Laboratory investigation on the condensation and corrosion rates of top of line corrosion in carbon steel: a case study from pipeline transporting wet gas in elevated temperature

A glass cell was designed to simulate the condition for top of line corrosion encountered in wet gas transportation pipelines. Aqueous solution of 3 wt- NaCl saturated with CO2 at atmospheric pressure was employed. Effect of temperature gradient in the formation of condensation and its rate was inve...

Full description

Saved in:
Bibliographic Details
Main Authors: Rozi, F., Mohebbi, H., Ismail, M.C., Kakooei, S., Ahmadi, M., Aghasadeghi, A.
Format: Article
Published: Taylor and Francis Ltd. 2018
Online Access:https://www.scopus.com/inward/record.uri?eid=2-s2.0-85049874800&doi=10.1080%2f1478422X.2018.1499169&partnerID=40&md5=28df1bbc2d340c8e85dee24c6e144d43
http://eprints.utp.edu.my/20801/
Tags: Add Tag
No Tags, Be the first to tag this record!
id my.utp.eprints.20801
record_format eprints
spelling my.utp.eprints.208012019-02-26T02:25:13Z Laboratory investigation on the condensation and corrosion rates of top of line corrosion in carbon steel: a case study from pipeline transporting wet gas in elevated temperature Rozi, F. Mohebbi, H. Ismail, M.C. Kakooei, S. Ahmadi, M. Aghasadeghi, A. Aghasadeghi, A. A glass cell was designed to simulate the condition for top of line corrosion encountered in wet gas transportation pipelines. Aqueous solution of 3 wt- NaCl saturated with CO2 at atmospheric pressure was employed. Effect of temperature gradient in the formation of condensation and its rate was investigated. API 5L Grade X65 carbon steel material was used as the working electrode for the experiment. The condensation rate was measured for the temperature gradient of 20°C, 30°C and 50°C under atmospheric condition for 24â� h duration of the experiment. The corrosion rate of the specimens was measured using weight loss and Linear Polarisation Resistance (LPR) techniques. The LPR probe was immersed in the collected condensed water from the experiment to calculate the corrosion rate. The measured corrosion rate from the weight loss technique was in agreement with the corrosion rate measured from LPR. The corrosion rate measurement was repeated with the addition of 1000â� ppm of pH modifying agent. This study indicates that the corrosion rate of pipeline and piping when subject to temperature gradient of 50°C and above is very high and alarming. © 2018 Institute of Materials, Minerals and Mining Published by Taylor & Francis on behalf of the Institute Taylor and Francis Ltd. 2018 Article NonPeerReviewed https://www.scopus.com/inward/record.uri?eid=2-s2.0-85049874800&doi=10.1080%2f1478422X.2018.1499169&partnerID=40&md5=28df1bbc2d340c8e85dee24c6e144d43 Rozi, F. and Mohebbi, H. and Ismail, M.C. and Kakooei, S. and Ahmadi, M. and Aghasadeghi, A. and Aghasadeghi, A. (2018) Laboratory investigation on the condensation and corrosion rates of top of line corrosion in carbon steel: a case study from pipeline transporting wet gas in elevated temperature. Corrosion Engineering Science and Technology . pp. 1-5. http://eprints.utp.edu.my/20801/
institution Universiti Teknologi Petronas
building UTP Resource Centre
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Teknologi Petronas
content_source UTP Institutional Repository
url_provider http://eprints.utp.edu.my/
description A glass cell was designed to simulate the condition for top of line corrosion encountered in wet gas transportation pipelines. Aqueous solution of 3 wt- NaCl saturated with CO2 at atmospheric pressure was employed. Effect of temperature gradient in the formation of condensation and its rate was investigated. API 5L Grade X65 carbon steel material was used as the working electrode for the experiment. The condensation rate was measured for the temperature gradient of 20°C, 30°C and 50°C under atmospheric condition for 24â� h duration of the experiment. The corrosion rate of the specimens was measured using weight loss and Linear Polarisation Resistance (LPR) techniques. The LPR probe was immersed in the collected condensed water from the experiment to calculate the corrosion rate. The measured corrosion rate from the weight loss technique was in agreement with the corrosion rate measured from LPR. The corrosion rate measurement was repeated with the addition of 1000â� ppm of pH modifying agent. This study indicates that the corrosion rate of pipeline and piping when subject to temperature gradient of 50°C and above is very high and alarming. © 2018 Institute of Materials, Minerals and Mining Published by Taylor & Francis on behalf of the Institute
format Article
author Rozi, F.
Mohebbi, H.
Ismail, M.C.
Kakooei, S.
Ahmadi, M.
Aghasadeghi, A.
Aghasadeghi, A.
spellingShingle Rozi, F.
Mohebbi, H.
Ismail, M.C.
Kakooei, S.
Ahmadi, M.
Aghasadeghi, A.
Aghasadeghi, A.
Laboratory investigation on the condensation and corrosion rates of top of line corrosion in carbon steel: a case study from pipeline transporting wet gas in elevated temperature
author_facet Rozi, F.
Mohebbi, H.
Ismail, M.C.
Kakooei, S.
Ahmadi, M.
Aghasadeghi, A.
Aghasadeghi, A.
author_sort Rozi, F.
title Laboratory investigation on the condensation and corrosion rates of top of line corrosion in carbon steel: a case study from pipeline transporting wet gas in elevated temperature
title_short Laboratory investigation on the condensation and corrosion rates of top of line corrosion in carbon steel: a case study from pipeline transporting wet gas in elevated temperature
title_full Laboratory investigation on the condensation and corrosion rates of top of line corrosion in carbon steel: a case study from pipeline transporting wet gas in elevated temperature
title_fullStr Laboratory investigation on the condensation and corrosion rates of top of line corrosion in carbon steel: a case study from pipeline transporting wet gas in elevated temperature
title_full_unstemmed Laboratory investigation on the condensation and corrosion rates of top of line corrosion in carbon steel: a case study from pipeline transporting wet gas in elevated temperature
title_sort laboratory investigation on the condensation and corrosion rates of top of line corrosion in carbon steel: a case study from pipeline transporting wet gas in elevated temperature
publisher Taylor and Francis Ltd.
publishDate 2018
url https://www.scopus.com/inward/record.uri?eid=2-s2.0-85049874800&doi=10.1080%2f1478422X.2018.1499169&partnerID=40&md5=28df1bbc2d340c8e85dee24c6e144d43
http://eprints.utp.edu.my/20801/
_version_ 1738656234762928128
score 13.18916