Investigation of tip sonication effects on structural quality of graphene nanoplatelets (GNPs) for superior solvent dispersion

The exceptional properties of graphene and its structural uniqueness can improve the performance of nanocomposites if it can attain the uniform dispersion. Tip sonication assisted graphene solvent dispersion has been emerged as an efficient approach but it can cause significant degradation of graphe...

Full description

Saved in:
Bibliographic Details
Main Authors: Baig, Z., Mamat, O., Mustapha, M., Mumtaz, A., Munir, K.S., Sarfraz, M.
Format: Article
Published: Elsevier B.V. 2018
Online Access:https://www.scopus.com/inward/record.uri?eid=2-s2.0-85044546055&doi=10.1016%2fj.ultsonch.2018.03.007&partnerID=40&md5=c8e382ed7429d60c3146ff87107fa6c5
http://eprints.utp.edu.my/20664/
Tags: Add Tag
No Tags, Be the first to tag this record!
id my.utp.eprints.20664
record_format eprints
spelling my.utp.eprints.206642018-10-11T02:22:13Z Investigation of tip sonication effects on structural quality of graphene nanoplatelets (GNPs) for superior solvent dispersion Baig, Z. Mamat, O. Mustapha, M. Mumtaz, A. Munir, K.S. Sarfraz, M. The exceptional properties of graphene and its structural uniqueness can improve the performance of nanocomposites if it can attain the uniform dispersion. Tip sonication assisted graphene solvent dispersion has been emerged as an efficient approach but it can cause significant degradation of graphene structure. This study aimed to evaluate the parametric influence of tip sonication on the characteristics of sp2 carbon structure in graphene nanoplatelets by varying the sonication time and respective energy at three different amplitudes (60, 80 and 100). The study is essential to identify appropriate parameters so as to achieve high-quality and defect-free graphene with a highly desirable aspect ratio after solvent dispersion for composite reinforcement. Quantitative approach via Raman spectroscopy is used to find the defect ratio and lateral size of graphene evolved under the effect of tip sonication parameters. Results imply that the defect ratio is steady and increases continually with GNPs, along with the transformation to the nano-crystalline stage I up to 60 min sonication at all amplitudes. Exfoliation was clearly observed at all amplitudes together with sheet re-stacking due to considerable size reduction of sheets with large quantity. Finally, considerable GNPs fragmentation occurred during sonication with increased amplitude and time as confirmed by the reduction of sp2 domain (La) and flake size. This also validates the formation of edge-type defect in graphene. Convincingly, lower amplitude and time (up to 60 min) produce better results for a low defect content and larger particle size as quantified by Raman analysis. © 2018 Elsevier B.V. Elsevier B.V. 2018 Article PeerReviewed https://www.scopus.com/inward/record.uri?eid=2-s2.0-85044546055&doi=10.1016%2fj.ultsonch.2018.03.007&partnerID=40&md5=c8e382ed7429d60c3146ff87107fa6c5 Baig, Z. and Mamat, O. and Mustapha, M. and Mumtaz, A. and Munir, K.S. and Sarfraz, M. (2018) Investigation of tip sonication effects on structural quality of graphene nanoplatelets (GNPs) for superior solvent dispersion. Ultrasonics Sonochemistry, 45 . pp. 133-149. http://eprints.utp.edu.my/20664/
institution Universiti Teknologi Petronas
building UTP Resource Centre
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Teknologi Petronas
content_source UTP Institutional Repository
url_provider http://eprints.utp.edu.my/
description The exceptional properties of graphene and its structural uniqueness can improve the performance of nanocomposites if it can attain the uniform dispersion. Tip sonication assisted graphene solvent dispersion has been emerged as an efficient approach but it can cause significant degradation of graphene structure. This study aimed to evaluate the parametric influence of tip sonication on the characteristics of sp2 carbon structure in graphene nanoplatelets by varying the sonication time and respective energy at three different amplitudes (60, 80 and 100). The study is essential to identify appropriate parameters so as to achieve high-quality and defect-free graphene with a highly desirable aspect ratio after solvent dispersion for composite reinforcement. Quantitative approach via Raman spectroscopy is used to find the defect ratio and lateral size of graphene evolved under the effect of tip sonication parameters. Results imply that the defect ratio is steady and increases continually with GNPs, along with the transformation to the nano-crystalline stage I up to 60 min sonication at all amplitudes. Exfoliation was clearly observed at all amplitudes together with sheet re-stacking due to considerable size reduction of sheets with large quantity. Finally, considerable GNPs fragmentation occurred during sonication with increased amplitude and time as confirmed by the reduction of sp2 domain (La) and flake size. This also validates the formation of edge-type defect in graphene. Convincingly, lower amplitude and time (up to 60 min) produce better results for a low defect content and larger particle size as quantified by Raman analysis. © 2018 Elsevier B.V.
format Article
author Baig, Z.
Mamat, O.
Mustapha, M.
Mumtaz, A.
Munir, K.S.
Sarfraz, M.
spellingShingle Baig, Z.
Mamat, O.
Mustapha, M.
Mumtaz, A.
Munir, K.S.
Sarfraz, M.
Investigation of tip sonication effects on structural quality of graphene nanoplatelets (GNPs) for superior solvent dispersion
author_facet Baig, Z.
Mamat, O.
Mustapha, M.
Mumtaz, A.
Munir, K.S.
Sarfraz, M.
author_sort Baig, Z.
title Investigation of tip sonication effects on structural quality of graphene nanoplatelets (GNPs) for superior solvent dispersion
title_short Investigation of tip sonication effects on structural quality of graphene nanoplatelets (GNPs) for superior solvent dispersion
title_full Investigation of tip sonication effects on structural quality of graphene nanoplatelets (GNPs) for superior solvent dispersion
title_fullStr Investigation of tip sonication effects on structural quality of graphene nanoplatelets (GNPs) for superior solvent dispersion
title_full_unstemmed Investigation of tip sonication effects on structural quality of graphene nanoplatelets (GNPs) for superior solvent dispersion
title_sort investigation of tip sonication effects on structural quality of graphene nanoplatelets (gnps) for superior solvent dispersion
publisher Elsevier B.V.
publishDate 2018
url https://www.scopus.com/inward/record.uri?eid=2-s2.0-85044546055&doi=10.1016%2fj.ultsonch.2018.03.007&partnerID=40&md5=c8e382ed7429d60c3146ff87107fa6c5
http://eprints.utp.edu.my/20664/
_version_ 1738656215683039232
score 13.160551