Machined Surface Quality in Nano Aluminum Mixed Electrical Discharge Machining

The development of implants in biomedical engineering application nowadays requires materials with good mechanical and physical properties. Conventional machining of high strength alloy materials is a challenge. Non-conventional machining processes such as electrical discharge machining (EDM) of hig...

Full description

Saved in:
Bibliographic Details
Main Authors: Abdul-Rani, A.M., Nanimina, A.M., Ginta, T.L., Razak, M.A.
Format: Article
Published: Elsevier B.V. 2017
Online Access:https://www.scopus.com/inward/record.uri?eid=2-s2.0-85010223573&doi=10.1016%2fj.promfg.2016.12.061&partnerID=40&md5=68915c081fe65cc91dce695faaa92b89
http://eprints.utp.edu.my/19855/
Tags: Add Tag
No Tags, Be the first to tag this record!
id my.utp.eprints.19855
record_format eprints
spelling my.utp.eprints.198552018-04-22T13:10:55Z Machined Surface Quality in Nano Aluminum Mixed Electrical Discharge Machining Abdul-Rani, A.M. Nanimina, A.M. Ginta, T.L. Razak, M.A. The development of implants in biomedical engineering application nowadays requires materials with good mechanical and physical properties. Conventional machining of high strength alloy materials is a challenge. Non-conventional machining processes such as electrical discharge machining (EDM) of high strength material have its limitations. Among the limitations are surface modification, induced corrosion, residual stress and reducing of fatigue performance during the EDM process. Nano aluminum mixed electrical discharge machining (PMEDM) is envisaged able to address some of the above mentioned problems. In this study, PMEDM machining performance on biomedical grade titanium alloy workpiece using nano aluminum powder is assessed to establish its improvement for biomedical application. The characteristics analyzed are surface roughness (Ra) and surface morphology. Process variable machining parameters used are peak current, ON-time (pulse duration), gap voltage and nano aluminum concentration. Results of nano aluminum PMEDM on titanium alloy material show slight improvement in terms of surface roughness (Ra) and surface morphology as compared to conventional EDM. PMEDM results show fewer defects in terms of cracks, craters and voids. © 2016 Elsevier B.V. 2017 Article PeerReviewed https://www.scopus.com/inward/record.uri?eid=2-s2.0-85010223573&doi=10.1016%2fj.promfg.2016.12.061&partnerID=40&md5=68915c081fe65cc91dce695faaa92b89 Abdul-Rani, A.M. and Nanimina, A.M. and Ginta, T.L. and Razak, M.A. (2017) Machined Surface Quality in Nano Aluminum Mixed Electrical Discharge Machining. Procedia Manufacturing, 7 . pp. 510-517. http://eprints.utp.edu.my/19855/
institution Universiti Teknologi Petronas
building UTP Resource Centre
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Teknologi Petronas
content_source UTP Institutional Repository
url_provider http://eprints.utp.edu.my/
description The development of implants in biomedical engineering application nowadays requires materials with good mechanical and physical properties. Conventional machining of high strength alloy materials is a challenge. Non-conventional machining processes such as electrical discharge machining (EDM) of high strength material have its limitations. Among the limitations are surface modification, induced corrosion, residual stress and reducing of fatigue performance during the EDM process. Nano aluminum mixed electrical discharge machining (PMEDM) is envisaged able to address some of the above mentioned problems. In this study, PMEDM machining performance on biomedical grade titanium alloy workpiece using nano aluminum powder is assessed to establish its improvement for biomedical application. The characteristics analyzed are surface roughness (Ra) and surface morphology. Process variable machining parameters used are peak current, ON-time (pulse duration), gap voltage and nano aluminum concentration. Results of nano aluminum PMEDM on titanium alloy material show slight improvement in terms of surface roughness (Ra) and surface morphology as compared to conventional EDM. PMEDM results show fewer defects in terms of cracks, craters and voids. © 2016
format Article
author Abdul-Rani, A.M.
Nanimina, A.M.
Ginta, T.L.
Razak, M.A.
spellingShingle Abdul-Rani, A.M.
Nanimina, A.M.
Ginta, T.L.
Razak, M.A.
Machined Surface Quality in Nano Aluminum Mixed Electrical Discharge Machining
author_facet Abdul-Rani, A.M.
Nanimina, A.M.
Ginta, T.L.
Razak, M.A.
author_sort Abdul-Rani, A.M.
title Machined Surface Quality in Nano Aluminum Mixed Electrical Discharge Machining
title_short Machined Surface Quality in Nano Aluminum Mixed Electrical Discharge Machining
title_full Machined Surface Quality in Nano Aluminum Mixed Electrical Discharge Machining
title_fullStr Machined Surface Quality in Nano Aluminum Mixed Electrical Discharge Machining
title_full_unstemmed Machined Surface Quality in Nano Aluminum Mixed Electrical Discharge Machining
title_sort machined surface quality in nano aluminum mixed electrical discharge machining
publisher Elsevier B.V.
publishDate 2017
url https://www.scopus.com/inward/record.uri?eid=2-s2.0-85010223573&doi=10.1016%2fj.promfg.2016.12.061&partnerID=40&md5=68915c081fe65cc91dce695faaa92b89
http://eprints.utp.edu.my/19855/
_version_ 1738656128893452288
score 13.160551