Synthesis and physicochemical characterization of naringenin- and gallic acid-loaded polymeric micelles for cancer drug delivery
Introduction: Cancer nano-drug drug delivery system is important as it can improve drug bioavailability and reduce dosing frequency. Polymeric micelles (PMs) can reach targeted site and most likely will be useful in reducing side effects of treatment. This study aimed to synthesize naringenin- and g...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Published: |
Universiti Putra Malaysia Press
2022
|
Subjects: | |
Online Access: | http://eprints.utm.my/id/eprint/99437/ http://dx.doi.org/10.47836/mjmhs.18.s6.7 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
my.utm.99437 |
---|---|
record_format |
eprints |
spelling |
my.utm.994372023-02-27T04:23:50Z http://eprints.utm.my/id/eprint/99437/ Synthesis and physicochemical characterization of naringenin- and gallic acid-loaded polymeric micelles for cancer drug delivery Basir, Khaliqah Syafiqah Mufida, Husnul Ismail, Norjihada Izzah TK Electrical engineering. Electronics Nuclear engineering Introduction: Cancer nano-drug drug delivery system is important as it can improve drug bioavailability and reduce dosing frequency. Polymeric micelles (PMs) can reach targeted site and most likely will be useful in reducing side effects of treatment. This study aimed to synthesize naringenin- and gallic acid-loaded polymeric micelles for cancer drug delivery and to determine their physicochemical properties including particle size, polydispersity index (PDI) and structural composition. Methods: Two types of PMs (naringenin [NAR] and gallic acid [GA]) were prepared in different proportions of polyethylene glycol (PEG) and D-a-tocopheryl polyethylene glycol 1000 succinate (TPGS) via solvent casting method. These PMs were visually observed and further analyzed by dynamic light scaterring (DLS) and fourier-transform infrared spectroscopy (FTIR) techniques. Results: From this study, NAR-PEG-TPGS PMs showed particle size less than 30 nm whereas GA-PEG-TPGS PMs exhibited larger particle size between 171-205 nm. NAR2 PM that contain higher amount of TPGS were observed to have smaller particle size whereas GA2 PM with higher TPGS content exhibited larger particle size. PDI values for these drug-loaded PMs were between 0.32-0.74. FTIR results confirmed the presence of O-H and C=O stretching vibrations in all PM samples. Conclusion: NAR-PEG-TPGS PMs had shown more relevant physicochemical properties than GA-PEG-TPGS PMs for cancer nano-drug delivery. Universiti Putra Malaysia Press 2022 Article PeerReviewed Basir, Khaliqah Syafiqah and Mufida, Husnul and Ismail, Norjihada Izzah (2022) Synthesis and physicochemical characterization of naringenin- and gallic acid-loaded polymeric micelles for cancer drug delivery. Malaysian Journal of Medicine and Health Sciences, 18 (SUPP 6). pp. 36-40. ISSN 1675-8544 http://dx.doi.org/10.47836/mjmhs.18.s6.7 DOI : 10.47836/mjmhs.18.s6.7 |
institution |
Universiti Teknologi Malaysia |
building |
UTM Library |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Teknologi Malaysia |
content_source |
UTM Institutional Repository |
url_provider |
http://eprints.utm.my/ |
topic |
TK Electrical engineering. Electronics Nuclear engineering |
spellingShingle |
TK Electrical engineering. Electronics Nuclear engineering Basir, Khaliqah Syafiqah Mufida, Husnul Ismail, Norjihada Izzah Synthesis and physicochemical characterization of naringenin- and gallic acid-loaded polymeric micelles for cancer drug delivery |
description |
Introduction: Cancer nano-drug drug delivery system is important as it can improve drug bioavailability and reduce dosing frequency. Polymeric micelles (PMs) can reach targeted site and most likely will be useful in reducing side effects of treatment. This study aimed to synthesize naringenin- and gallic acid-loaded polymeric micelles for cancer drug delivery and to determine their physicochemical properties including particle size, polydispersity index (PDI) and structural composition. Methods: Two types of PMs (naringenin [NAR] and gallic acid [GA]) were prepared in different proportions of polyethylene glycol (PEG) and D-a-tocopheryl polyethylene glycol 1000 succinate (TPGS) via solvent casting method. These PMs were visually observed and further analyzed by dynamic light scaterring (DLS) and fourier-transform infrared spectroscopy (FTIR) techniques. Results: From this study, NAR-PEG-TPGS PMs showed particle size less than 30 nm whereas GA-PEG-TPGS PMs exhibited larger particle size between 171-205 nm. NAR2 PM that contain higher amount of TPGS were observed to have smaller particle size whereas GA2 PM with higher TPGS content exhibited larger particle size. PDI values for these drug-loaded PMs were between 0.32-0.74. FTIR results confirmed the presence of O-H and C=O stretching vibrations in all PM samples. Conclusion: NAR-PEG-TPGS PMs had shown more relevant physicochemical properties than GA-PEG-TPGS PMs for cancer nano-drug delivery. |
format |
Article |
author |
Basir, Khaliqah Syafiqah Mufida, Husnul Ismail, Norjihada Izzah |
author_facet |
Basir, Khaliqah Syafiqah Mufida, Husnul Ismail, Norjihada Izzah |
author_sort |
Basir, Khaliqah Syafiqah |
title |
Synthesis and physicochemical characterization of naringenin- and gallic acid-loaded polymeric micelles for cancer drug delivery |
title_short |
Synthesis and physicochemical characterization of naringenin- and gallic acid-loaded polymeric micelles for cancer drug delivery |
title_full |
Synthesis and physicochemical characterization of naringenin- and gallic acid-loaded polymeric micelles for cancer drug delivery |
title_fullStr |
Synthesis and physicochemical characterization of naringenin- and gallic acid-loaded polymeric micelles for cancer drug delivery |
title_full_unstemmed |
Synthesis and physicochemical characterization of naringenin- and gallic acid-loaded polymeric micelles for cancer drug delivery |
title_sort |
synthesis and physicochemical characterization of naringenin- and gallic acid-loaded polymeric micelles for cancer drug delivery |
publisher |
Universiti Putra Malaysia Press |
publishDate |
2022 |
url |
http://eprints.utm.my/id/eprint/99437/ http://dx.doi.org/10.47836/mjmhs.18.s6.7 |
_version_ |
1758966897869586432 |
score |
13.211869 |