An independent protocol supporting real-time cross-network authentication in electric vehicles' network

The absence of charging infrastructure has been highlighted by several researchers as an obstacle in electric vehicle (EV) industry. However, less attention has been drawn to user access to existing charging infrastructure. Therefore, this research investigated the practical methods of increasing ac...

Full description

Saved in:
Bibliographic Details
Main Author: Salah, Khalil
Format: Thesis
Language:English
Published: 2018
Subjects:
Online Access:http://eprints.utm.my/id/eprint/98244/1/KhalilSalahPRAZAK2018.pdf
http://eprints.utm.my/id/eprint/98244/
http://dms.library.utm.my:8080/vital/access/manager/Repository/vital:142867
Tags: Add Tag
No Tags, Be the first to tag this record!
id my.utm.98244
record_format eprints
spelling my.utm.982442022-11-23T08:12:37Z http://eprints.utm.my/id/eprint/98244/ An independent protocol supporting real-time cross-network authentication in electric vehicles' network Salah, Khalil QA75 Electronic computers. Computer science TK Electrical engineering. Electronics Nuclear engineering The absence of charging infrastructure has been highlighted by several researchers as an obstacle in electric vehicle (EV) industry. However, less attention has been drawn to user access to existing charging infrastructure. Therefore, this research investigated the practical methods of increasing accessible charging stations to EV users. EV Service Providers (SP) and EV Networks have been established to provide charging facilities for EV users. However, the business model and method of identifying users have formed a group of closed networks performing in isolation. Despite the availability of charging stations, the isolation of EV networks prevents users from charging their EVs which has created a barrier against the development of EV industry and affected the general acceptance of EVs. Thus, this research aimed at formulating an operational framework which involved a proposed Inter-Service Provider Charging Protocol (ISPCP) that aimed to provide a peer-to-peer communication among networks of charging stations and supports cross-network charging capability for EV users. The framework consisted four phases: review of existing works, development of a protocol, development of a RESTFul WEB API using the protocol, and evaluation of the protocol using the API. To develop the protocol, current state of the art in the networks of EV charging stations was reviewed. In addition, a systematic literature review (SLR) was conducted to investigate the causes and effects of range anxiety and to extract the existing solutions. ISPCP has been implemented, deployed, and tested using a RESTFul WEB API in order to evaluate its feasibility and effectiveness in which performance, response time, and cost were measured and identified as its effectiveness metrics. Findings of the study showed a faster response time of 9.4 seconds which is considered to be a 59.24% improvement when compared to similar protocols. The results obtained in the study provide support for feasibility of ISPCP as it has been proven to increase the number of charging stations accessible to EV users by providing cross-network charging solutions. 2018 Thesis NonPeerReviewed application/pdf en http://eprints.utm.my/id/eprint/98244/1/KhalilSalahPRAZAK2018.pdf Salah, Khalil (2018) An independent protocol supporting real-time cross-network authentication in electric vehicles' network. PhD thesis, Universiti Teknologi Malaysia, Razak Faculty of Technology & Informatics. http://dms.library.utm.my:8080/vital/access/manager/Repository/vital:142867
institution Universiti Teknologi Malaysia
building UTM Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Teknologi Malaysia
content_source UTM Institutional Repository
url_provider http://eprints.utm.my/
language English
topic QA75 Electronic computers. Computer science
TK Electrical engineering. Electronics Nuclear engineering
spellingShingle QA75 Electronic computers. Computer science
TK Electrical engineering. Electronics Nuclear engineering
Salah, Khalil
An independent protocol supporting real-time cross-network authentication in electric vehicles' network
description The absence of charging infrastructure has been highlighted by several researchers as an obstacle in electric vehicle (EV) industry. However, less attention has been drawn to user access to existing charging infrastructure. Therefore, this research investigated the practical methods of increasing accessible charging stations to EV users. EV Service Providers (SP) and EV Networks have been established to provide charging facilities for EV users. However, the business model and method of identifying users have formed a group of closed networks performing in isolation. Despite the availability of charging stations, the isolation of EV networks prevents users from charging their EVs which has created a barrier against the development of EV industry and affected the general acceptance of EVs. Thus, this research aimed at formulating an operational framework which involved a proposed Inter-Service Provider Charging Protocol (ISPCP) that aimed to provide a peer-to-peer communication among networks of charging stations and supports cross-network charging capability for EV users. The framework consisted four phases: review of existing works, development of a protocol, development of a RESTFul WEB API using the protocol, and evaluation of the protocol using the API. To develop the protocol, current state of the art in the networks of EV charging stations was reviewed. In addition, a systematic literature review (SLR) was conducted to investigate the causes and effects of range anxiety and to extract the existing solutions. ISPCP has been implemented, deployed, and tested using a RESTFul WEB API in order to evaluate its feasibility and effectiveness in which performance, response time, and cost were measured and identified as its effectiveness metrics. Findings of the study showed a faster response time of 9.4 seconds which is considered to be a 59.24% improvement when compared to similar protocols. The results obtained in the study provide support for feasibility of ISPCP as it has been proven to increase the number of charging stations accessible to EV users by providing cross-network charging solutions.
format Thesis
author Salah, Khalil
author_facet Salah, Khalil
author_sort Salah, Khalil
title An independent protocol supporting real-time cross-network authentication in electric vehicles' network
title_short An independent protocol supporting real-time cross-network authentication in electric vehicles' network
title_full An independent protocol supporting real-time cross-network authentication in electric vehicles' network
title_fullStr An independent protocol supporting real-time cross-network authentication in electric vehicles' network
title_full_unstemmed An independent protocol supporting real-time cross-network authentication in electric vehicles' network
title_sort independent protocol supporting real-time cross-network authentication in electric vehicles' network
publishDate 2018
url http://eprints.utm.my/id/eprint/98244/1/KhalilSalahPRAZAK2018.pdf
http://eprints.utm.my/id/eprint/98244/
http://dms.library.utm.my:8080/vital/access/manager/Repository/vital:142867
_version_ 1751536167939997696
score 13.214268