An independent protocol supporting real-time cross-network authentication in electric vehicles' network
The absence of charging infrastructure has been highlighted by several researchers as an obstacle in electric vehicle (EV) industry. However, less attention has been drawn to user access to existing charging infrastructure. Therefore, this research investigated the practical methods of increasing ac...
Saved in:
Main Author: | |
---|---|
Format: | Thesis |
Language: | English |
Published: |
2018
|
Subjects: | |
Online Access: | http://eprints.utm.my/id/eprint/98244/1/KhalilSalahPRAZAK2018.pdf http://eprints.utm.my/id/eprint/98244/ http://dms.library.utm.my:8080/vital/access/manager/Repository/vital:142867 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
my.utm.98244 |
---|---|
record_format |
eprints |
spelling |
my.utm.982442022-11-23T08:12:37Z http://eprints.utm.my/id/eprint/98244/ An independent protocol supporting real-time cross-network authentication in electric vehicles' network Salah, Khalil QA75 Electronic computers. Computer science TK Electrical engineering. Electronics Nuclear engineering The absence of charging infrastructure has been highlighted by several researchers as an obstacle in electric vehicle (EV) industry. However, less attention has been drawn to user access to existing charging infrastructure. Therefore, this research investigated the practical methods of increasing accessible charging stations to EV users. EV Service Providers (SP) and EV Networks have been established to provide charging facilities for EV users. However, the business model and method of identifying users have formed a group of closed networks performing in isolation. Despite the availability of charging stations, the isolation of EV networks prevents users from charging their EVs which has created a barrier against the development of EV industry and affected the general acceptance of EVs. Thus, this research aimed at formulating an operational framework which involved a proposed Inter-Service Provider Charging Protocol (ISPCP) that aimed to provide a peer-to-peer communication among networks of charging stations and supports cross-network charging capability for EV users. The framework consisted four phases: review of existing works, development of a protocol, development of a RESTFul WEB API using the protocol, and evaluation of the protocol using the API. To develop the protocol, current state of the art in the networks of EV charging stations was reviewed. In addition, a systematic literature review (SLR) was conducted to investigate the causes and effects of range anxiety and to extract the existing solutions. ISPCP has been implemented, deployed, and tested using a RESTFul WEB API in order to evaluate its feasibility and effectiveness in which performance, response time, and cost were measured and identified as its effectiveness metrics. Findings of the study showed a faster response time of 9.4 seconds which is considered to be a 59.24% improvement when compared to similar protocols. The results obtained in the study provide support for feasibility of ISPCP as it has been proven to increase the number of charging stations accessible to EV users by providing cross-network charging solutions. 2018 Thesis NonPeerReviewed application/pdf en http://eprints.utm.my/id/eprint/98244/1/KhalilSalahPRAZAK2018.pdf Salah, Khalil (2018) An independent protocol supporting real-time cross-network authentication in electric vehicles' network. PhD thesis, Universiti Teknologi Malaysia, Razak Faculty of Technology & Informatics. http://dms.library.utm.my:8080/vital/access/manager/Repository/vital:142867 |
institution |
Universiti Teknologi Malaysia |
building |
UTM Library |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Teknologi Malaysia |
content_source |
UTM Institutional Repository |
url_provider |
http://eprints.utm.my/ |
language |
English |
topic |
QA75 Electronic computers. Computer science TK Electrical engineering. Electronics Nuclear engineering |
spellingShingle |
QA75 Electronic computers. Computer science TK Electrical engineering. Electronics Nuclear engineering Salah, Khalil An independent protocol supporting real-time cross-network authentication in electric vehicles' network |
description |
The absence of charging infrastructure has been highlighted by several researchers as an obstacle in electric vehicle (EV) industry. However, less attention has been drawn to user access to existing charging infrastructure. Therefore, this research investigated the practical methods of increasing accessible charging stations to EV users. EV Service Providers (SP) and EV Networks have been established to provide charging facilities for EV users. However, the business model and method of identifying users have formed a group of closed networks performing in isolation. Despite the availability of charging stations, the isolation of EV networks prevents users from charging their EVs which has created a barrier against the development of EV industry and affected the general acceptance of EVs. Thus, this research aimed at formulating an operational framework which involved a proposed Inter-Service Provider Charging Protocol (ISPCP) that aimed to provide a peer-to-peer communication among networks of charging stations and supports cross-network charging capability for EV users. The framework consisted four phases: review of existing works, development of a protocol, development of a RESTFul WEB API using the protocol, and evaluation of the protocol using the API. To develop the protocol, current state of the art in the networks of EV charging stations was reviewed. In addition, a systematic literature review (SLR) was conducted to investigate the causes and effects of range anxiety and to extract the existing solutions. ISPCP has been implemented, deployed, and tested using a RESTFul WEB API in order to evaluate its feasibility and effectiveness in which performance, response time, and cost were measured and identified as its effectiveness metrics. Findings of the study showed a faster response time of 9.4 seconds which is considered to be a 59.24% improvement when compared to similar protocols. The results obtained in the study provide support for feasibility of ISPCP as it has been proven to increase the number of charging stations accessible to EV users by providing cross-network charging solutions. |
format |
Thesis |
author |
Salah, Khalil |
author_facet |
Salah, Khalil |
author_sort |
Salah, Khalil |
title |
An independent protocol supporting real-time cross-network authentication in electric vehicles' network |
title_short |
An independent protocol supporting real-time cross-network authentication in electric vehicles' network |
title_full |
An independent protocol supporting real-time cross-network authentication in electric vehicles' network |
title_fullStr |
An independent protocol supporting real-time cross-network authentication in electric vehicles' network |
title_full_unstemmed |
An independent protocol supporting real-time cross-network authentication in electric vehicles' network |
title_sort |
independent protocol supporting real-time cross-network authentication in electric vehicles' network |
publishDate |
2018 |
url |
http://eprints.utm.my/id/eprint/98244/1/KhalilSalahPRAZAK2018.pdf http://eprints.utm.my/id/eprint/98244/ http://dms.library.utm.my:8080/vital/access/manager/Repository/vital:142867 |
_version_ |
1751536167939997696 |
score |
13.214268 |