Numerical and sensitivity analysis of MHD bioconvective slip flow of nanomaterial with binary chemical reaction and Newtonian heating

The impact of Stefan blowing on the MHD bioconvective slip flow of a nanofluid towards a sheet is explored using numerical and statistical tools. The governing partial differential equations are nondimensionalized and converted to similarity equations using apposite transformations. These transforme...

Full description

Saved in:
Bibliographic Details
Main Authors: Md. Basir, Md. Faisal, Muhammad Bilal, Muhammad Bilal, Choudhary, Rakesh, Mackolil, Joby, Mahanthesh, B., Nisar, Kottakkaran S.
Format: Article
Published: John Wiley and Sons Inc 2021
Subjects:
Online Access:http://eprints.utm.my/id/eprint/97713/
http://dx.doi.org/10.1002/htj.22132
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The impact of Stefan blowing on the MHD bioconvective slip flow of a nanofluid towards a sheet is explored using numerical and statistical tools. The governing partial differential equations are nondimensionalized and converted to similarity equations using apposite transformations. These transformed equations are solved using the Runge–Kutta–Fehlberg method with the shooting technique. Graphical visualizations are used to scrutinize the effect of the controlling parameters on the flow profiles, skin friction coefficient, local Nusselt, and Sherwood number. Moreover, the sensitivities of the reduced Sherwood and Nusselt number to the input variables of interest are explored by adopting the response surface methodology. The outcomes of the limiting cases are emphatically in corroboration with the outcomes from preceding research. It is found that the heat transfer rate has a positive sensitivity towards the haphazard motion of the nanoparticles and a negative sensitivity towards the thermomigration. The thermal field is enhanced by the Stefan blowing aspect. Moreover, the fluid velocity can be controlled by the applied magnetic field.