Modelling seagrass blue carbon stock in seagrass-mangrove habitats using remote sensing approach

Modelling seagrass blue carbon stocks are essential to complement the satellitebased remote sensing in detecting the underground seagrass carbon stocks. The green carbon initiatives have for long reported the detailed mapping and estimation procedural as well as the audit protocol of the global terr...

Full description

Saved in:
Bibliographic Details
Main Author: Sani, Dalhatu Aliyu
Format: Thesis
Language:English
Published: 2020
Subjects:
Online Access:http://eprints.utm.my/id/eprint/96134/1/DalhatuAliyuSaniPFABU2020.pdf.pdf
http://eprints.utm.my/id/eprint/96134/
http://dms.library.utm.my:8080/vital/access/manager/Repository/vital:142638
Tags: Add Tag
No Tags, Be the first to tag this record!
id my.utm.96134
record_format eprints
institution Universiti Teknologi Malaysia
building UTM Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Teknologi Malaysia
content_source UTM Institutional Repository
url_provider http://eprints.utm.my/
language English
topic G70.39-70.6 Remote sensing
spellingShingle G70.39-70.6 Remote sensing
Sani, Dalhatu Aliyu
Modelling seagrass blue carbon stock in seagrass-mangrove habitats using remote sensing approach
description Modelling seagrass blue carbon stocks are essential to complement the satellitebased remote sensing in detecting the underground seagrass carbon stocks. The green carbon initiatives have for long reported the detailed mapping and estimation procedural as well as the audit protocol of the global terrestrial carbon stocks. Research on the blue carbon mapping and its related modelling and estimation, on the other hand, is rarely if ever published as part of its importance is realised but remained scattered. Therefore, this study aimed at investigating blue carbon stocks in seagrass habitats by estimating the total carbon stored in seagrass using the satellite-based technique. The specific objectives are to : 1) assess and adapt some selected models for deriving seagrass total above-ground carbon (STAGC); 2) formulate new approach based-on selected models to combine with in-situ data, to model and estimate blue carbon stocks from seagrass total below-ground carbon (STBGC); 3) develop a novel technique using the selected models with soil organic carbon (SOC) to model and estimate the blue carbon stocks from seagrass total soil organic carbon (STSOC); and 4) integrate all the models (STAGC, STBGC, and STSOC) to produce a framework for the mapping and estimation of seagrass total blue carbon stock (STBCS). Suitable logistic functions were selected and applied on the satellite images to investigate seagrass, and soil carbon stocks along the seagrass meadows of Peninsular Malaysia (PM) coastline All the Landsat ETM+’s shortwave visible bands (blue, green, red) were employed for detecting and mapping seagrass stocks boundary within the coastline of PM. The derivation of STAGC was adopted from the existing bottom reflectance index (BRI) based technique via establishing a strong relationship between BRI with seagrass total aboveground biomass (STAGB). While for STBGC estimation, the STAGB^ (STAGB obtained from BRI image) were correlated with seagrass total below-ground biomass derived from insitu measurement (STBGB^^ro). Both these STAGB^ and STBGB^.^ro were converted into STAGC and STBGC using a conversion factor. Furthermore, the derivation of seagrass total soil organic carbon derived via laboratory test (STSOCi^b) was achieved through correlating BRI values with corresponding in-situ samples of soil organic carbon (SOC) obtained from the laboratory analysis by the Carbon-Hydrogen Nitrogen Sulphur (CHNS) analyser. These models were generated from the three major sample areas (Johor, Penang, and Terengganu), which were used to estimate the entire seagrass carbon stocks in the coastline of PM. The models revealed a robust correlation results for BRI versus STAGB (R2 = 0.962, p< 0.001), STAGB^, versus STBGB/A,wro (R2 = 0.933, p< 0.001,), and BRI and STSOC (R2 = 0 .989, p< 0.001) respectively. The STBCS for the whole seagrass meadows along the coastline of PM was finally realised, demonstrating a good agreement in accuracy assessment (Root Mean Square Error (RMSE) = +- <1MtC/ha\). It is, therefore, concluded that the new approach introduced by this research on STBGC and STSOC estimation was tested and proved significant on the entire STBCS quantification for the PM coastline. The contributions are critical to fast-track the United Nations Framework Convention on Climate Change (UNFCCC) agreement to report the STBCS contents. Hence, this study has managed to propose a new fundamental initiative for estimating STBCS for speedy realisation of 2020 agenda on targets 14.2 and 14.5 of United Nations’ Sustainable Development Goal 14th (life below the water).
format Thesis
author Sani, Dalhatu Aliyu
author_facet Sani, Dalhatu Aliyu
author_sort Sani, Dalhatu Aliyu
title Modelling seagrass blue carbon stock in seagrass-mangrove habitats using remote sensing approach
title_short Modelling seagrass blue carbon stock in seagrass-mangrove habitats using remote sensing approach
title_full Modelling seagrass blue carbon stock in seagrass-mangrove habitats using remote sensing approach
title_fullStr Modelling seagrass blue carbon stock in seagrass-mangrove habitats using remote sensing approach
title_full_unstemmed Modelling seagrass blue carbon stock in seagrass-mangrove habitats using remote sensing approach
title_sort modelling seagrass blue carbon stock in seagrass-mangrove habitats using remote sensing approach
publishDate 2020
url http://eprints.utm.my/id/eprint/96134/1/DalhatuAliyuSaniPFABU2020.pdf.pdf
http://eprints.utm.my/id/eprint/96134/
http://dms.library.utm.my:8080/vital/access/manager/Repository/vital:142638
_version_ 1738510327982587904
spelling my.utm.961342022-07-04T04:47:58Z http://eprints.utm.my/id/eprint/96134/ Modelling seagrass blue carbon stock in seagrass-mangrove habitats using remote sensing approach Sani, Dalhatu Aliyu G70.39-70.6 Remote sensing Modelling seagrass blue carbon stocks are essential to complement the satellitebased remote sensing in detecting the underground seagrass carbon stocks. The green carbon initiatives have for long reported the detailed mapping and estimation procedural as well as the audit protocol of the global terrestrial carbon stocks. Research on the blue carbon mapping and its related modelling and estimation, on the other hand, is rarely if ever published as part of its importance is realised but remained scattered. Therefore, this study aimed at investigating blue carbon stocks in seagrass habitats by estimating the total carbon stored in seagrass using the satellite-based technique. The specific objectives are to : 1) assess and adapt some selected models for deriving seagrass total above-ground carbon (STAGC); 2) formulate new approach based-on selected models to combine with in-situ data, to model and estimate blue carbon stocks from seagrass total below-ground carbon (STBGC); 3) develop a novel technique using the selected models with soil organic carbon (SOC) to model and estimate the blue carbon stocks from seagrass total soil organic carbon (STSOC); and 4) integrate all the models (STAGC, STBGC, and STSOC) to produce a framework for the mapping and estimation of seagrass total blue carbon stock (STBCS). Suitable logistic functions were selected and applied on the satellite images to investigate seagrass, and soil carbon stocks along the seagrass meadows of Peninsular Malaysia (PM) coastline All the Landsat ETM+’s shortwave visible bands (blue, green, red) were employed for detecting and mapping seagrass stocks boundary within the coastline of PM. The derivation of STAGC was adopted from the existing bottom reflectance index (BRI) based technique via establishing a strong relationship between BRI with seagrass total aboveground biomass (STAGB). While for STBGC estimation, the STAGB^ (STAGB obtained from BRI image) were correlated with seagrass total below-ground biomass derived from insitu measurement (STBGB^^ro). Both these STAGB^ and STBGB^.^ro were converted into STAGC and STBGC using a conversion factor. Furthermore, the derivation of seagrass total soil organic carbon derived via laboratory test (STSOCi^b) was achieved through correlating BRI values with corresponding in-situ samples of soil organic carbon (SOC) obtained from the laboratory analysis by the Carbon-Hydrogen Nitrogen Sulphur (CHNS) analyser. These models were generated from the three major sample areas (Johor, Penang, and Terengganu), which were used to estimate the entire seagrass carbon stocks in the coastline of PM. The models revealed a robust correlation results for BRI versus STAGB (R2 = 0.962, p< 0.001), STAGB^, versus STBGB/A,wro (R2 = 0.933, p< 0.001,), and BRI and STSOC (R2 = 0 .989, p< 0.001) respectively. The STBCS for the whole seagrass meadows along the coastline of PM was finally realised, demonstrating a good agreement in accuracy assessment (Root Mean Square Error (RMSE) = +- <1MtC/ha\). It is, therefore, concluded that the new approach introduced by this research on STBGC and STSOC estimation was tested and proved significant on the entire STBCS quantification for the PM coastline. The contributions are critical to fast-track the United Nations Framework Convention on Climate Change (UNFCCC) agreement to report the STBCS contents. Hence, this study has managed to propose a new fundamental initiative for estimating STBCS for speedy realisation of 2020 agenda on targets 14.2 and 14.5 of United Nations’ Sustainable Development Goal 14th (life below the water). 2020 Thesis NonPeerReviewed application/pdf en http://eprints.utm.my/id/eprint/96134/1/DalhatuAliyuSaniPFABU2020.pdf.pdf Sani, Dalhatu Aliyu (2020) Modelling seagrass blue carbon stock in seagrass-mangrove habitats using remote sensing approach. PhD thesis, Universiti Teknologi Malaysia. http://dms.library.utm.my:8080/vital/access/manager/Repository/vital:142638
score 13.18916