Improving the classification performance on imbalanced data sets via new hybrid parameterisation model
The aim of this work is to analyse the performance of the new proposed hybrid parameterisation model in handling problematic data. Three types of problematic data will be highlighted in this paper: i) big data set, ii) uncertain and inconsistent data set and iii) imbalanced data set. The proposed hy...
Saved in:
Main Authors: | Mohamad, M., Selamat, A., Subroto, I. M., Krejcar, O. |
---|---|
格式: | Article |
語言: | English |
出版: |
King Saud bin Abdulaziz University
2021
|
主題: | |
在線閱讀: | http://eprints.utm.my/id/eprint/95554/1/AliSelamat2021_ImprovingtheClassificationPerformance.pdf http://eprints.utm.my/id/eprint/95554/ http://dx.doi.org/10.1016/j.jksuci.2019.04.009 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
相似書籍
-
Fuzzy and smote resampling technique for imbalanced data sets
由: Zorkeflee, Maisarah, et al.
出版: (2015) -
Intuitionistic fuzzy parameterised fuzzy soft set
由: El-Yagubi, Entisar, et al.
出版: (2013) -
Imbalanced Classification Methods for Student
Grade Prediction : A Systematic Literature Review
由: Siti Dianah, Abdul Bujang, et al.
出版: (2023) -
Classification of Qur’anic topics based on imbalanced
classification
由: Arkok, Bassam, et al.
出版: (2020) -
An analysis on new hybrid parameter selection model performance over big data set
由: Mohamad, Masurah, et al.
出版: (2020)