Improving the classification performance on imbalanced data sets via new hybrid parameterisation model
The aim of this work is to analyse the performance of the new proposed hybrid parameterisation model in handling problematic data. Three types of problematic data will be highlighted in this paper: i) big data set, ii) uncertain and inconsistent data set and iii) imbalanced data set. The proposed hy...
保存先:
主要な著者: | Mohamad, M., Selamat, A., Subroto, I. M., Krejcar, O. |
---|---|
フォーマット: | 論文 |
言語: | English |
出版事項: |
King Saud bin Abdulaziz University
2021
|
主題: | |
オンライン・アクセス: | http://eprints.utm.my/id/eprint/95554/1/AliSelamat2021_ImprovingtheClassificationPerformance.pdf http://eprints.utm.my/id/eprint/95554/ http://dx.doi.org/10.1016/j.jksuci.2019.04.009 |
タグ: |
タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
|
類似資料
-
Fuzzy and smote resampling technique for imbalanced data sets
著者:: Zorkeflee, Maisarah, 等
出版事項: (2015) -
Intuitionistic fuzzy parameterised fuzzy soft set
著者:: El-Yagubi, Entisar, 等
出版事項: (2013) -
Imbalanced Classification Methods for Student
Grade Prediction : A Systematic Literature Review
著者:: Siti Dianah, Abdul Bujang, 等
出版事項: (2023) -
Classification of Qur’anic topics based on imbalanced
classification
著者:: Arkok, Bassam, 等
出版事項: (2020) -
An analysis on new hybrid parameter selection model performance over big data set
著者:: Mohamad, Masurah, 等
出版事項: (2020)