Recent trends and developments in conducting polymer nanocomposites for multifunctional applications

Electrically-conducting polymers (CPs) were first developed as a revolutionary class of organic compounds that possess optical and electrical properties comparable to that of metals as well as inorganic semiconductors and display the commendable properties correlated with traditional polymers, like...

Full description

Saved in:
Bibliographic Details
Main Authors: Sharma, S., Sudhakara, P., Omran, A. A. B.
Format: Article
Language:English
Published: MDPI 2021
Subjects:
Online Access:http://eprints.utm.my/id/eprint/95029/1/RAIlyas2021_RecentTrendsandDevelopments.pdf
http://eprints.utm.my/id/eprint/95029/
http://dx.doi.org/10.3390/polym13172898
Tags: Add Tag
No Tags, Be the first to tag this record!
id my.utm.95029
record_format eprints
spelling my.utm.950292022-04-29T22:01:33Z http://eprints.utm.my/id/eprint/95029/ Recent trends and developments in conducting polymer nanocomposites for multifunctional applications Sharma, S. Sudhakara, P. Omran, A. A. B. TP Chemical technology Electrically-conducting polymers (CPs) were first developed as a revolutionary class of organic compounds that possess optical and electrical properties comparable to that of metals as well as inorganic semiconductors and display the commendable properties correlated with traditional polymers, like the ease of manufacture along with resilience in processing. Polymer nanocomposites are designed and manufactured to ensure excellent promising properties for anti-static (electrically conducting), anti-corrosion, actuators, sensors, shape memory alloys, biomedical, flexible electronics, solar cells, fuel cells, supercapacitors, LEDs, and adhesive applications with desired-appealing and cost-effective, functional surface coatings. The distinctive properties of nanocomposite materials involve significantly improved mechanical characteristics, barrier-properties, weight-reduction, and increased, long-lasting performance in terms of heat, wear, and scratch-resistant. Constraint in availability of power due to continuous depletion in the reservoirs of fossil fuels has affected the performance and functioning of electronic and energy storage appliances. For such reasons, efforts to modify the performance of such appliances are under way through blending design engineering with organic electronics. Unlike conventional inorganic semiconductors, organic electronic materials are developed from conducting polymers (CPs), dyes and charge transfer complexes. However, the conductive polymers are perhaps more bio-compatible rather than conventional metals or semi-conductive materials. Such characteristics make it more fascinating for bio-engineering investigators to conduct research on polymers possessing antistatic properties for various applica-tions. An extensive overview of different techniques of synthesis and the applications of polymer bio-nanocomposites in various fields of sensors, actuators, shape memory polymers, flexible elec-tronics, optical limiting, electrical properties (batteries, solar cells, fuel cells, supercapacitors, LEDs), corrosion-protection and biomedical application are well-summarized from the findings all across the world in more than 150 references, exclusively from the past four years. This paper also presents recent advancements in composites of rare-earth oxides based on conducting polymer composites. Across a variety of biological and medical applications, the fact that numerous tissues were receptive to electric fields and stimuli made CPs more enticing. MDPI 2021 Article PeerReviewed application/pdf en http://eprints.utm.my/id/eprint/95029/1/RAIlyas2021_RecentTrendsandDevelopments.pdf Sharma, S. and Sudhakara, P. and Omran, A. A. B. (2021) Recent trends and developments in conducting polymer nanocomposites for multifunctional applications. Polymers, 13 (17). ISSN 2073-4360 http://dx.doi.org/10.3390/polym13172898 DOI: 10.3390/polym13172898
institution Universiti Teknologi Malaysia
building UTM Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Teknologi Malaysia
content_source UTM Institutional Repository
url_provider http://eprints.utm.my/
language English
topic TP Chemical technology
spellingShingle TP Chemical technology
Sharma, S.
Sudhakara, P.
Omran, A. A. B.
Recent trends and developments in conducting polymer nanocomposites for multifunctional applications
description Electrically-conducting polymers (CPs) were first developed as a revolutionary class of organic compounds that possess optical and electrical properties comparable to that of metals as well as inorganic semiconductors and display the commendable properties correlated with traditional polymers, like the ease of manufacture along with resilience in processing. Polymer nanocomposites are designed and manufactured to ensure excellent promising properties for anti-static (electrically conducting), anti-corrosion, actuators, sensors, shape memory alloys, biomedical, flexible electronics, solar cells, fuel cells, supercapacitors, LEDs, and adhesive applications with desired-appealing and cost-effective, functional surface coatings. The distinctive properties of nanocomposite materials involve significantly improved mechanical characteristics, barrier-properties, weight-reduction, and increased, long-lasting performance in terms of heat, wear, and scratch-resistant. Constraint in availability of power due to continuous depletion in the reservoirs of fossil fuels has affected the performance and functioning of electronic and energy storage appliances. For such reasons, efforts to modify the performance of such appliances are under way through blending design engineering with organic electronics. Unlike conventional inorganic semiconductors, organic electronic materials are developed from conducting polymers (CPs), dyes and charge transfer complexes. However, the conductive polymers are perhaps more bio-compatible rather than conventional metals or semi-conductive materials. Such characteristics make it more fascinating for bio-engineering investigators to conduct research on polymers possessing antistatic properties for various applica-tions. An extensive overview of different techniques of synthesis and the applications of polymer bio-nanocomposites in various fields of sensors, actuators, shape memory polymers, flexible elec-tronics, optical limiting, electrical properties (batteries, solar cells, fuel cells, supercapacitors, LEDs), corrosion-protection and biomedical application are well-summarized from the findings all across the world in more than 150 references, exclusively from the past four years. This paper also presents recent advancements in composites of rare-earth oxides based on conducting polymer composites. Across a variety of biological and medical applications, the fact that numerous tissues were receptive to electric fields and stimuli made CPs more enticing.
format Article
author Sharma, S.
Sudhakara, P.
Omran, A. A. B.
author_facet Sharma, S.
Sudhakara, P.
Omran, A. A. B.
author_sort Sharma, S.
title Recent trends and developments in conducting polymer nanocomposites for multifunctional applications
title_short Recent trends and developments in conducting polymer nanocomposites for multifunctional applications
title_full Recent trends and developments in conducting polymer nanocomposites for multifunctional applications
title_fullStr Recent trends and developments in conducting polymer nanocomposites for multifunctional applications
title_full_unstemmed Recent trends and developments in conducting polymer nanocomposites for multifunctional applications
title_sort recent trends and developments in conducting polymer nanocomposites for multifunctional applications
publisher MDPI
publishDate 2021
url http://eprints.utm.my/id/eprint/95029/1/RAIlyas2021_RecentTrendsandDevelopments.pdf
http://eprints.utm.my/id/eprint/95029/
http://dx.doi.org/10.3390/polym13172898
_version_ 1732945423492972544
score 13.18916