Effect of ultraviolet radiation exposure on optical nonlinearity and switching traits of SnO2 thin films deposited by thermal evaporation

Highly transparent amorphous SnO2 thin films were deposited using the thermal evaporation method and characterized. The influence of the UV radiation exposure (for approximately 2 h) on the morphology, linear and nonlinear optical properties of the films was evaluated for the first time. The optical...

Full description

Saved in:
Bibliographic Details
Main Authors: Yadav, Sandeep, Kumari, Sonia, Ghoshal, S. K., Kumar, Raj, Chaudhary, S. K., Mohan, Devendra
Format: Article
Published: Elsevier Ltd 2021
Subjects:
Online Access:http://eprints.utm.my/id/eprint/94592/
http://dx.doi.org/10.1016/j.optlastec.2020.10657
Tags: Add Tag
No Tags, Be the first to tag this record!
id my.utm.94592
record_format eprints
spelling my.utm.945922022-03-31T15:48:15Z http://eprints.utm.my/id/eprint/94592/ Effect of ultraviolet radiation exposure on optical nonlinearity and switching traits of SnO2 thin films deposited by thermal evaporation Yadav, Sandeep Kumari, Sonia Ghoshal, S. K. Kumar, Raj Chaudhary, S. K. Mohan, Devendra QC Physics Highly transparent amorphous SnO2 thin films were deposited using the thermal evaporation method and characterized. The influence of the UV radiation exposure (for approximately 2 h) on the morphology, linear and nonlinear optical properties of the films was evaluated for the first time. The optical switching performance of the as-deposited thin films was examined using the pump–probe technique. A continuous wave (CW) diode-pumped solid-state laser (532 nm with maximum power of 100 mW) and He-Ne laser (633 nm with maximum power of 35 mW) was used for the pump and probe beam, respectively. The band gap energies of the films were calculated using the Mott and Davis model fitting procedure. The films transmittance was increased and band gap was decreased upon the UV exposure. The signal modulations in the films were observed with the increase in the pump power. The signal intensities of both as-deposited and UV radiation exposed films were correspondingly dropped from 7.58 to 7.47 mW and from 8.16 to 8.05 mW, when the pump power was raised beyond 20 mW. The achieved SnO2 films displayed unaltered dynamic range under the UV radiation exposure. In addition, the nonlinear absorption coefficients of the UV radiation exposed films were increased from 0.10139 to 0.36435 cm W-1. This indicated the stabilization of the films upon the UV exposure and subsequent removal of the excess oxygen. The higher value of the nonlinear absorption by the films satisfied their figure of merit. The proposed SnO2 thin films may be effective for the development of the nonlinear optical devices working in the UV region. Elsevier Ltd 2021 Article PeerReviewed Yadav, Sandeep and Kumari, Sonia and Ghoshal, S. K. and Kumar, Raj and Chaudhary, S. K. and Mohan, Devendra (2021) Effect of ultraviolet radiation exposure on optical nonlinearity and switching traits of SnO2 thin films deposited by thermal evaporation. Optics and Laser Technology, 133 . p. 106575. ISSN 0030-3992 http://dx.doi.org/10.1016/j.optlastec.2020.10657
institution Universiti Teknologi Malaysia
building UTM Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Teknologi Malaysia
content_source UTM Institutional Repository
url_provider http://eprints.utm.my/
topic QC Physics
spellingShingle QC Physics
Yadav, Sandeep
Kumari, Sonia
Ghoshal, S. K.
Kumar, Raj
Chaudhary, S. K.
Mohan, Devendra
Effect of ultraviolet radiation exposure on optical nonlinearity and switching traits of SnO2 thin films deposited by thermal evaporation
description Highly transparent amorphous SnO2 thin films were deposited using the thermal evaporation method and characterized. The influence of the UV radiation exposure (for approximately 2 h) on the morphology, linear and nonlinear optical properties of the films was evaluated for the first time. The optical switching performance of the as-deposited thin films was examined using the pump–probe technique. A continuous wave (CW) diode-pumped solid-state laser (532 nm with maximum power of 100 mW) and He-Ne laser (633 nm with maximum power of 35 mW) was used for the pump and probe beam, respectively. The band gap energies of the films were calculated using the Mott and Davis model fitting procedure. The films transmittance was increased and band gap was decreased upon the UV exposure. The signal modulations in the films were observed with the increase in the pump power. The signal intensities of both as-deposited and UV radiation exposed films were correspondingly dropped from 7.58 to 7.47 mW and from 8.16 to 8.05 mW, when the pump power was raised beyond 20 mW. The achieved SnO2 films displayed unaltered dynamic range under the UV radiation exposure. In addition, the nonlinear absorption coefficients of the UV radiation exposed films were increased from 0.10139 to 0.36435 cm W-1. This indicated the stabilization of the films upon the UV exposure and subsequent removal of the excess oxygen. The higher value of the nonlinear absorption by the films satisfied their figure of merit. The proposed SnO2 thin films may be effective for the development of the nonlinear optical devices working in the UV region.
format Article
author Yadav, Sandeep
Kumari, Sonia
Ghoshal, S. K.
Kumar, Raj
Chaudhary, S. K.
Mohan, Devendra
author_facet Yadav, Sandeep
Kumari, Sonia
Ghoshal, S. K.
Kumar, Raj
Chaudhary, S. K.
Mohan, Devendra
author_sort Yadav, Sandeep
title Effect of ultraviolet radiation exposure on optical nonlinearity and switching traits of SnO2 thin films deposited by thermal evaporation
title_short Effect of ultraviolet radiation exposure on optical nonlinearity and switching traits of SnO2 thin films deposited by thermal evaporation
title_full Effect of ultraviolet radiation exposure on optical nonlinearity and switching traits of SnO2 thin films deposited by thermal evaporation
title_fullStr Effect of ultraviolet radiation exposure on optical nonlinearity and switching traits of SnO2 thin films deposited by thermal evaporation
title_full_unstemmed Effect of ultraviolet radiation exposure on optical nonlinearity and switching traits of SnO2 thin films deposited by thermal evaporation
title_sort effect of ultraviolet radiation exposure on optical nonlinearity and switching traits of sno2 thin films deposited by thermal evaporation
publisher Elsevier Ltd
publishDate 2021
url http://eprints.utm.my/id/eprint/94592/
http://dx.doi.org/10.1016/j.optlastec.2020.10657
_version_ 1729703193974145024
score 13.211869