2D convolutional neural network for the detection of Asian Koel (Eudynamys Scolopaceus) vocalizations

Acoustic activity detection plays a vital role for automatic wildlife monitoring which includes the study of ecology, populations and habitats assessments. Birds are one of the few wildlife species to be monitored as their population and distribution are expected to change due to climate changes in...

Full description

Saved in:
Bibliographic Details
Main Author: Musa, Nurfaizah
Format: Thesis
Language:English
Published: 2020
Subjects:
Online Access:http://eprints.utm.my/id/eprint/92998/1/NurfaizahMusaMSKE2020.pdf
http://eprints.utm.my/id/eprint/92998/
http://dms.library.utm.my:8080/vital/access/manager/Repository/vital:135867
Tags: Add Tag
No Tags, Be the first to tag this record!
id my.utm.92998
record_format eprints
spelling my.utm.929982021-11-07T06:00:18Z http://eprints.utm.my/id/eprint/92998/ 2D convolutional neural network for the detection of Asian Koel (Eudynamys Scolopaceus) vocalizations Musa, Nurfaizah TK Electrical engineering. Electronics Nuclear engineering Acoustic activity detection plays a vital role for automatic wildlife monitoring which includes the study of ecology, populations and habitats assessments. Birds are one of the few wildlife species to be monitored as their population and distribution are expected to change due to climate changes in order to conserve the ecosystem, diversity and seasonal population changes. Monitoring animals based on sound (bioacoustics) monitoring involves continuous observation to capture rare events. Several existing bird sound classification devices records sounds at point reading and processed the data off-line that involves complex Convolution Neural Network (CNN) architecture which takes longer time in the processing stages as data needs to be acquired before being processed. This approach is not applicable on the real-time monitoring. Therefore, this project investigates the best architecture that can be implemented to lower the complexity of algorithm for a bird sound classification. Data training with bird sound from all over the world and non-bird sounds will be done in optimizing the algorithm. In precise, this project focuses on a bird sound classification with low resource CNN to classify an Eudynamys Scolopaceus bird species. The bird sound detection will be assessed on the Xeno-Canto dataset which is a dataset containing bird vocalization samples and Urban8k that is shared openly are used for training and testing. Data segmentation is done on each of the samples with 16kHz sampling frequency of 25% overlapping to avoid data loss. Segmented samples are then converted into spectrograms and fed into MobileNet CNN and Bulbul CNN Architecture for training and testing. A set of testing samples were used to predict the accuracy of each model and prediction results were presented in a confusion matrix. Results from both comparisons showed that MobileNet has a higher accuracy of 80% than Bulbul CNN with 64%. Further development and optimization of model architecture with the use of more training samples can be done in the future towards achieving a higher accuracy in classifying the bird sound. 2020 Thesis NonPeerReviewed application/pdf en http://eprints.utm.my/id/eprint/92998/1/NurfaizahMusaMSKE2020.pdf Musa, Nurfaizah (2020) 2D convolutional neural network for the detection of Asian Koel (Eudynamys Scolopaceus) vocalizations. Masters thesis, Universiti Teknologi Malaysia, Faculty of Engineering - School of Electrical Engineering. http://dms.library.utm.my:8080/vital/access/manager/Repository/vital:135867
institution Universiti Teknologi Malaysia
building UTM Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Teknologi Malaysia
content_source UTM Institutional Repository
url_provider http://eprints.utm.my/
language English
topic TK Electrical engineering. Electronics Nuclear engineering
spellingShingle TK Electrical engineering. Electronics Nuclear engineering
Musa, Nurfaizah
2D convolutional neural network for the detection of Asian Koel (Eudynamys Scolopaceus) vocalizations
description Acoustic activity detection plays a vital role for automatic wildlife monitoring which includes the study of ecology, populations and habitats assessments. Birds are one of the few wildlife species to be monitored as their population and distribution are expected to change due to climate changes in order to conserve the ecosystem, diversity and seasonal population changes. Monitoring animals based on sound (bioacoustics) monitoring involves continuous observation to capture rare events. Several existing bird sound classification devices records sounds at point reading and processed the data off-line that involves complex Convolution Neural Network (CNN) architecture which takes longer time in the processing stages as data needs to be acquired before being processed. This approach is not applicable on the real-time monitoring. Therefore, this project investigates the best architecture that can be implemented to lower the complexity of algorithm for a bird sound classification. Data training with bird sound from all over the world and non-bird sounds will be done in optimizing the algorithm. In precise, this project focuses on a bird sound classification with low resource CNN to classify an Eudynamys Scolopaceus bird species. The bird sound detection will be assessed on the Xeno-Canto dataset which is a dataset containing bird vocalization samples and Urban8k that is shared openly are used for training and testing. Data segmentation is done on each of the samples with 16kHz sampling frequency of 25% overlapping to avoid data loss. Segmented samples are then converted into spectrograms and fed into MobileNet CNN and Bulbul CNN Architecture for training and testing. A set of testing samples were used to predict the accuracy of each model and prediction results were presented in a confusion matrix. Results from both comparisons showed that MobileNet has a higher accuracy of 80% than Bulbul CNN with 64%. Further development and optimization of model architecture with the use of more training samples can be done in the future towards achieving a higher accuracy in classifying the bird sound.
format Thesis
author Musa, Nurfaizah
author_facet Musa, Nurfaizah
author_sort Musa, Nurfaizah
title 2D convolutional neural network for the detection of Asian Koel (Eudynamys Scolopaceus) vocalizations
title_short 2D convolutional neural network for the detection of Asian Koel (Eudynamys Scolopaceus) vocalizations
title_full 2D convolutional neural network for the detection of Asian Koel (Eudynamys Scolopaceus) vocalizations
title_fullStr 2D convolutional neural network for the detection of Asian Koel (Eudynamys Scolopaceus) vocalizations
title_full_unstemmed 2D convolutional neural network for the detection of Asian Koel (Eudynamys Scolopaceus) vocalizations
title_sort 2d convolutional neural network for the detection of asian koel (eudynamys scolopaceus) vocalizations
publishDate 2020
url http://eprints.utm.my/id/eprint/92998/1/NurfaizahMusaMSKE2020.pdf
http://eprints.utm.my/id/eprint/92998/
http://dms.library.utm.my:8080/vital/access/manager/Repository/vital:135867
_version_ 1717093404932833280
score 13.214268