Black box modelling and simulating the dynamic indoor air temperature of a laboratory using autoregressive–moving-average (ARMA) model

Mathematical model representing the dynamic indoor air temperature of a building is important for reducing the time and cost required to test any proposed thermal comfort control algorithm and strategy for that building through computer simulation. There are many types of mathematical model, and eac...

Full description

Saved in:
Bibliographic Details
Main Authors: Hussein, S. F. M., Sharifmuddin, N. B., Al rabeei, A. O., Faruq, A., Noorazizi, M. S., Zaki, S. A., Abdullah, S. S.
Format: Article
Language:English
Published: Institute of Advanced Engineering and Science 2020
Subjects:
Online Access:http://eprints.utm.my/id/eprint/92262/1/NBSharifmuddin2020_BlackBoxModellingAndSimulatingTheDynamicIndoorAir.pdf
http://eprints.utm.my/id/eprint/92262/
http://dx.doi.org/10.11591/ijeecs.v21.i2.pp791-800
Tags: Add Tag
No Tags, Be the first to tag this record!
id my.utm.92262
record_format eprints
spelling my.utm.922622021-09-28T07:34:51Z http://eprints.utm.my/id/eprint/92262/ Black box modelling and simulating the dynamic indoor air temperature of a laboratory using autoregressive–moving-average (ARMA) model Hussein, S. F. M. Sharifmuddin, N. B. Al rabeei, A. O. Faruq, A. Noorazizi, M. S. Zaki, S. A. Abdullah, S. S. T Technology (General) Mathematical model representing the dynamic indoor air temperature of a building is important for reducing the time and cost required to test any proposed thermal comfort control algorithm and strategy for that building through computer simulation. There are many types of mathematical model, and each type has its strength(s) and weakness(es). An autoregressive-moving-average (ARMA) model, a type of black box model is used to represent the dynamic indoor air temperature behaviour of industrial instrumentation laboratory at Malaysia-Japan international institute of technology (MJIIT), Universiti Teknologi Malaysia (UTM) Kuala Lumpur based on the recorded data from the laboratory and minimal physical characteristics knowledge of the laboratory. The ARMA model?s output developed in this research is compared with the actual data recorded from the laboratory for performance measurement. The obtained result shows that the ARMA model is sufficient for modelling and simulating the dynamic indoor air temperature behaviour of the laboratory. Institute of Advanced Engineering and Science 2020 Article PeerReviewed application/pdf en http://eprints.utm.my/id/eprint/92262/1/NBSharifmuddin2020_BlackBoxModellingAndSimulatingTheDynamicIndoorAir.pdf Hussein, S. F. M. and Sharifmuddin, N. B. and Al rabeei, A. O. and Faruq, A. and Noorazizi, M. S. and Zaki, S. A. and Abdullah, S. S. (2020) Black box modelling and simulating the dynamic indoor air temperature of a laboratory using autoregressive–moving-average (ARMA) model. Indonesian Journal of Electrical Engineering and Computer Science, 21 (2). pp. 791-800. ISSN 2502-4752 http://dx.doi.org/10.11591/ijeecs.v21.i2.pp791-800
institution Universiti Teknologi Malaysia
building UTM Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Teknologi Malaysia
content_source UTM Institutional Repository
url_provider http://eprints.utm.my/
language English
topic T Technology (General)
spellingShingle T Technology (General)
Hussein, S. F. M.
Sharifmuddin, N. B.
Al rabeei, A. O.
Faruq, A.
Noorazizi, M. S.
Zaki, S. A.
Abdullah, S. S.
Black box modelling and simulating the dynamic indoor air temperature of a laboratory using autoregressive–moving-average (ARMA) model
description Mathematical model representing the dynamic indoor air temperature of a building is important for reducing the time and cost required to test any proposed thermal comfort control algorithm and strategy for that building through computer simulation. There are many types of mathematical model, and each type has its strength(s) and weakness(es). An autoregressive-moving-average (ARMA) model, a type of black box model is used to represent the dynamic indoor air temperature behaviour of industrial instrumentation laboratory at Malaysia-Japan international institute of technology (MJIIT), Universiti Teknologi Malaysia (UTM) Kuala Lumpur based on the recorded data from the laboratory and minimal physical characteristics knowledge of the laboratory. The ARMA model?s output developed in this research is compared with the actual data recorded from the laboratory for performance measurement. The obtained result shows that the ARMA model is sufficient for modelling and simulating the dynamic indoor air temperature behaviour of the laboratory.
format Article
author Hussein, S. F. M.
Sharifmuddin, N. B.
Al rabeei, A. O.
Faruq, A.
Noorazizi, M. S.
Zaki, S. A.
Abdullah, S. S.
author_facet Hussein, S. F. M.
Sharifmuddin, N. B.
Al rabeei, A. O.
Faruq, A.
Noorazizi, M. S.
Zaki, S. A.
Abdullah, S. S.
author_sort Hussein, S. F. M.
title Black box modelling and simulating the dynamic indoor air temperature of a laboratory using autoregressive–moving-average (ARMA) model
title_short Black box modelling and simulating the dynamic indoor air temperature of a laboratory using autoregressive–moving-average (ARMA) model
title_full Black box modelling and simulating the dynamic indoor air temperature of a laboratory using autoregressive–moving-average (ARMA) model
title_fullStr Black box modelling and simulating the dynamic indoor air temperature of a laboratory using autoregressive–moving-average (ARMA) model
title_full_unstemmed Black box modelling and simulating the dynamic indoor air temperature of a laboratory using autoregressive–moving-average (ARMA) model
title_sort black box modelling and simulating the dynamic indoor air temperature of a laboratory using autoregressive–moving-average (arma) model
publisher Institute of Advanced Engineering and Science
publishDate 2020
url http://eprints.utm.my/id/eprint/92262/1/NBSharifmuddin2020_BlackBoxModellingAndSimulatingTheDynamicIndoorAir.pdf
http://eprints.utm.my/id/eprint/92262/
http://dx.doi.org/10.11591/ijeecs.v21.i2.pp791-800
_version_ 1712285071829893120
score 13.211869