Data-driven adaptive predictive control for an activated sludge process

Data-driven control requires no information of the mathematical model of the controlled process. This paper proposes the direct identification of controller parameters of activated sludge process. This class of data-driven control calculates the predictive controller parameters directly using subspa...

Full description

Saved in:
Bibliographic Details
Main Authors: Razali, Mashitah C., Abdul Wahab, Norhaliza, Ibrahim, Syahira, Zainal, Azavitra, Rahmat, M. F., Vilanova, Ramon
Format: Article
Language:English
Published: Institute of Advanced Engineering and Science 2020
Subjects:
Online Access:http://eprints.utm.my/id/eprint/91717/1/NorhalizaAbdulWahab2020_DataDrivenAdaptivePredictiveControl.pdf
http://eprints.utm.my/id/eprint/91717/
http://dx.doi.org/10.11591/eei.v9i5.2257
Tags: Add Tag
No Tags, Be the first to tag this record!
id my.utm.91717
record_format eprints
spelling my.utm.917172021-07-27T05:46:22Z http://eprints.utm.my/id/eprint/91717/ Data-driven adaptive predictive control for an activated sludge process Razali, Mashitah C. Abdul Wahab, Norhaliza Ibrahim, Syahira Zainal, Azavitra Rahmat, M. F. Vilanova, Ramon TK Electrical engineering. Electronics Nuclear engineering Data-driven control requires no information of the mathematical model of the controlled process. This paper proposes the direct identification of controller parameters of activated sludge process. This class of data-driven control calculates the predictive controller parameters directly using subspace identification technique. By updating input-output data using receding window mechanism, the adaptive strategy can be achieved. The robustness test and stability analysis of direct adaptive model predictive control are discussed to realize the effectiveness of this adaptive control scheme. The applicability of the controller algorithm to adapt into varying kinetic parameters and operating conditions is evaluated. Simulation results show that by a proper and effective excitation of direct identification of controller parameters, the convergence and stability of the implicit predictive model can be achieved. Institute of Advanced Engineering and Science 2020-10 Article PeerReviewed application/pdf en http://eprints.utm.my/id/eprint/91717/1/NorhalizaAbdulWahab2020_DataDrivenAdaptivePredictiveControl.pdf Razali, Mashitah C. and Abdul Wahab, Norhaliza and Ibrahim, Syahira and Zainal, Azavitra and Rahmat, M. F. and Vilanova, Ramon (2020) Data-driven adaptive predictive control for an activated sludge process. Bulletin of Electrical Engineering and Informatics, 9 (5). pp. 1827-1834. ISSN 2089-3191 http://dx.doi.org/10.11591/eei.v9i5.2257 DOI:10.11591/eei.v9i5.2257
institution Universiti Teknologi Malaysia
building UTM Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Teknologi Malaysia
content_source UTM Institutional Repository
url_provider http://eprints.utm.my/
language English
topic TK Electrical engineering. Electronics Nuclear engineering
spellingShingle TK Electrical engineering. Electronics Nuclear engineering
Razali, Mashitah C.
Abdul Wahab, Norhaliza
Ibrahim, Syahira
Zainal, Azavitra
Rahmat, M. F.
Vilanova, Ramon
Data-driven adaptive predictive control for an activated sludge process
description Data-driven control requires no information of the mathematical model of the controlled process. This paper proposes the direct identification of controller parameters of activated sludge process. This class of data-driven control calculates the predictive controller parameters directly using subspace identification technique. By updating input-output data using receding window mechanism, the adaptive strategy can be achieved. The robustness test and stability analysis of direct adaptive model predictive control are discussed to realize the effectiveness of this adaptive control scheme. The applicability of the controller algorithm to adapt into varying kinetic parameters and operating conditions is evaluated. Simulation results show that by a proper and effective excitation of direct identification of controller parameters, the convergence and stability of the implicit predictive model can be achieved.
format Article
author Razali, Mashitah C.
Abdul Wahab, Norhaliza
Ibrahim, Syahira
Zainal, Azavitra
Rahmat, M. F.
Vilanova, Ramon
author_facet Razali, Mashitah C.
Abdul Wahab, Norhaliza
Ibrahim, Syahira
Zainal, Azavitra
Rahmat, M. F.
Vilanova, Ramon
author_sort Razali, Mashitah C.
title Data-driven adaptive predictive control for an activated sludge process
title_short Data-driven adaptive predictive control for an activated sludge process
title_full Data-driven adaptive predictive control for an activated sludge process
title_fullStr Data-driven adaptive predictive control for an activated sludge process
title_full_unstemmed Data-driven adaptive predictive control for an activated sludge process
title_sort data-driven adaptive predictive control for an activated sludge process
publisher Institute of Advanced Engineering and Science
publishDate 2020
url http://eprints.utm.my/id/eprint/91717/1/NorhalizaAbdulWahab2020_DataDrivenAdaptivePredictiveControl.pdf
http://eprints.utm.my/id/eprint/91717/
http://dx.doi.org/10.11591/eei.v9i5.2257
_version_ 1706956984295620608
score 13.211869