Structure and properties of lipase activated by cellulose-silica polyethersulfone membrane for production of pentyl valerate

Herein, this study extracted nanocrystalline cellulose (NC) and silica (SiO2) from raw oil palm leaves (OPL), and employed as nanofillers in polyethersulfone (PES) to produce NC-SiO2-PES as support to immobilize Candida rugosa lipase (CRL) (NC-SiO2-PES/CRL). XRD, TGA-DTG and FTIR-ATR data affirmed t...

Full description

Saved in:
Bibliographic Details
Main Authors: Elias, Nursyafiqah, Abdul Wahab, Roswanira, Chandren, Sheela, Jamalis, Joazaizulfazli, Mahat, Naji Arafat, Lau, Woei Jye
Format: Article
Published: Elsevier Ltd 2020
Subjects:
Online Access:http://eprints.utm.my/id/eprint/91556/
http://dx.doi.org/10.1016/j.carbpol.2020.116549
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Herein, this study extracted nanocrystalline cellulose (NC) and silica (SiO2) from raw oil palm leaves (OPL), and employed as nanofillers in polyethersulfone (PES) to produce NC-SiO2-PES as support to immobilize Candida rugosa lipase (CRL) (NC-SiO2-PES/CRL). XRD, TGA-DTG and FTIR-ATR data affirmed that NC and SiO2 were isolated from OPL with corresponding crystallinity indices of 68 % and 70 %. A 0.02 cm membrane size with 5% (w/v) of NC-SiO2 without PVP K30 was optimal for membrane fabrication. CRL immobilized on the Glut-AP-NC-SiO2-PES membrane gave a higher conversion of pentyl valerate (PeVa) (91.3 %, p < 0.05) compared to Glut-NC-SiO2-PES (73.9 %) (p < 0.05). Characterization of the NC-SiO2-PES/CRL biocatalyst verified the presence of CRL. Hence, raw OPL is a proven good source of NC and SiO2, as reinforcement nanofillers in PES. The overall findings envisage the promising use of NC-SiO2-PES/CRL to catalyze an expedient and high yield of PeVa, alongside the suitability of NC-SiO2-PES for activating other enzymes.