fEEG contrast enhancement: power law transformation vs intuitionistic fuzzy set
This work focused on contrast enhancement of Flat Electroencephalography (fEEG) image by using Power Law Transformation (PLT) and Intuitionistic Fuzzy Set (IFS). PLT is a classical method whereas the IFS is an advanced fuzzy approach. The values of parameter in both methods are varied to obtain d...
保存先:
主要な著者: | , , |
---|---|
フォーマット: | 論文 |
出版事項: |
Akademi Sains Malaysia
2020
|
主題: | |
オンライン・アクセス: | http://eprints.utm.my/id/eprint/91529/ https://www.akademisains.gov.my/asmsj/article/feeg-contrast-enhancement-power-law-transformation-vs-intuitionistic-fuzzy-set/ |
タグ: |
タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
|
要約: | This work focused on contrast enhancement of Flat Electroencephalography (fEEG) image by using Power Law Transformation (PLT) and Intuitionistic Fuzzy Set (IFS). PLT is a classical method whereas the IFS is an advanced fuzzy approach. The values of parameter in both methods are varied to obtain different levels of enhancement. The results show that the IFS is more powerful in preserving the information of the cluster centresas the values of parameter increased. |
---|