Absorption and luminescence spectral analysis of Dy3+-doped magnesium borate glass

This paper reports the luminescence potential of the dysprosium ion (Dy3+)-doped (varying contents from 0.1 to 1.0 mol%) magnesium borate glasses prepared by the melt-quenching method. As-quenched samples were characterized systematically to determine the effects of various Dy3+ contents on their st...

Full description

Saved in:
Bibliographic Details
Main Authors: Ichoja, A., Hashim, S., Ghoshal, S. K., Hashim, I. H.
Format: Article
Published: Elsevier B.V. 2020
Subjects:
Online Access:http://eprints.utm.my/id/eprint/90748/
http://dx.doi.org/10.1016/j.cjph.2020.03.029
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper reports the luminescence potential of the dysprosium ion (Dy3+)-doped (varying contents from 0.1 to 1.0 mol%) magnesium borate glasses prepared by the melt-quenching method. As-quenched samples were characterized systematically to determine the effects of various Dy3+ contents on their structure, physical and optical traits. The Judd−Ofelt (J−O) intensity parameters (Ω2, Ω4, Ω6) and radiative properties of the best sample (with 0.7 mol% of Dy3+ doping) was evaluated to complement the experimental optical data. The studied glasses revealed three luminescence emission peaks at 382 nm (4F9/2→6H15/2, intense Blue), 572 nm (4F9/2→6H15/2, intense Yellow) and 661 nm (4F9/2→6H11/2, weak Red) under the excitation wavelength of 347 nm. The emission intensity was first increased up to the Dy3+ content of 0.7 mol% and then quenched. The observed luminescence intensity quenching was due to the resonant energy transfer from the excited state to the neighbouring ground state of Dy3+. The obtained high value of Ω2 signified the strong degree of covalency between the Dy3+ and ligand environment. The optimum glass sample (with 0.7 mol% of Dy3+) showed higher values of the branching ratio and stimulated emission cross-cross section for the 4F9/2→6H15/2 (yellow) emission transition, indicating its potential as bright yellow luminescent material and high gain visible laser applications.