Modelling labour productivity using SVM and RF: a comparative study on classifiers performance
The purpose of this paper is to propose a data-driven approach for preparation of Construction Labour Productivity (CLP) models from influencing labour factors. Two state-of-art machine learning-based classifiers, Support Vector Machine (SVM) and Random Forest (RF) were used for modelling CLP. First...
保存先:
主要な著者: | Momade, Mohammed Hamza, Shahid, Shamsuddin, Hainin, Mohd. Rosli, Nashwan, Mohamed Salem, Umar, Abdulhakim Tahir |
---|---|
フォーマット: | 論文 |
出版事項: |
Taylor and Francis Ltd.
2020
|
主題: | |
オンライン・アクセス: | http://eprints.utm.my/id/eprint/90632/ http://dx.doi.org/10.1080/15623599.2020.1744799 |
タグ: |
タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
|
類似資料
-
Construction labour productivity: review of factors identified
著者:: Hamza, Mohammed, 等
出版事項: (2022) -
Modelling construction labour productivity from labour characteristics
著者:: Momade, Mohammed Hamza
出版事項: (2020) -
Modelling construction labour productivity from labour's characteristics
著者:: Momade, Mohammed Hamza
出版事項: (2020) -
Identifying motivational and demotivational productivity factors in Qatar construction projects
著者:: Momade, Mohammed Hamza, 等
出版事項: (2019) -
Adaptive chebyshev fusion of vegetation imagery based on SVM classifier
著者:: Omar, Zaid, 等
出版事項: (2015)