Modelling labour productivity using SVM and RF: a comparative study on classifiers performance

The purpose of this paper is to propose a data-driven approach for preparation of Construction Labour Productivity (CLP) models from influencing labour factors. Two state-of-art machine learning-based classifiers, Support Vector Machine (SVM) and Random Forest (RF) were used for modelling CLP. First...

詳細記述

保存先:
書誌詳細
主要な著者: Momade, Mohammed Hamza, Shahid, Shamsuddin, Hainin, Mohd. Rosli, Nashwan, Mohamed Salem, Umar, Abdulhakim Tahir
フォーマット: 論文
出版事項: Taylor and Francis Ltd. 2020
主題:
オンライン・アクセス:http://eprints.utm.my/id/eprint/90632/
http://dx.doi.org/10.1080/15623599.2020.1744799
タグ: タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!

類似資料