The use of radial basis function and non-linear autoregressive exogenous neural networks to forecast multi-step ahead of time flood water level
Many different Artificial Neural Networks (ANN) models of flood have been developed for forecast updating. However, the model performance, and error prediction in which forecast outputs are adjusted directly based on models calibrated to the time series of differences between observed and forecast v...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Universitas Ahmad Dahlan
2019
|
Subjects: | |
Online Access: | http://eprints.utm.my/id/eprint/88600/1/AmrulFaruq2019_TheUseofRadialBasisFunction.pdf http://eprints.utm.my/id/eprint/88600/ https://dx.doi.org/10.26555/ijain.v5i1.280 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
my.utm.88600 |
---|---|
record_format |
eprints |
spelling |
my.utm.886002020-12-15T10:31:40Z http://eprints.utm.my/id/eprint/88600/ The use of radial basis function and non-linear autoregressive exogenous neural networks to forecast multi-step ahead of time flood water level Faruq, A. Abdullah, S. S. Marto, A. Bakar, M. A. A. Hussein, S. F. M. Razali, C. M. C. T Technology (General) Many different Artificial Neural Networks (ANN) models of flood have been developed for forecast updating. However, the model performance, and error prediction in which forecast outputs are adjusted directly based on models calibrated to the time series of differences between observed and forecast values, are very interesting and challenging task. This paper presents an improved lead time flood forecasting using Non-linear Auto Regressive Exogenous Neural Network (NARXNN), which shows better performance in term of forecast precision and produces minimum error compared to neural network method using Radial Basis Function (RBF) in examined 12-hour ahead of time. First, RBF forecasting model was employed to predict the flood water level of Kelantan River at Kuala Krai, Kelantan, Malaysia. The model is tested for 1-hour and 7-hour ahead of time water level at flood location. The same analysis has also been taken by NARXNN method. Then, a non-linear neural network model with exogenous input promoted with enhancing a forecast lead time to 12-hour. Both about the performance comparison has briefly been analyzed. The result verified the precision of error prediction of the presented flood forecasting model. Universitas Ahmad Dahlan 2019 Article PeerReviewed application/pdf en http://eprints.utm.my/id/eprint/88600/1/AmrulFaruq2019_TheUseofRadialBasisFunction.pdf Faruq, A. and Abdullah, S. S. and Marto, A. and Bakar, M. A. A. and Hussein, S. F. M. and Razali, C. M. C. (2019) The use of radial basis function and non-linear autoregressive exogenous neural networks to forecast multi-step ahead of time flood water level. International Journal of Advances in Intelligent Informatics, 5 (1). pp. 1-10. ISSN 2442-6571 https://dx.doi.org/10.26555/ijain.v5i1.280 DOI:10.26555/ijain.v5i1.280 |
institution |
Universiti Teknologi Malaysia |
building |
UTM Library |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Teknologi Malaysia |
content_source |
UTM Institutional Repository |
url_provider |
http://eprints.utm.my/ |
language |
English |
topic |
T Technology (General) |
spellingShingle |
T Technology (General) Faruq, A. Abdullah, S. S. Marto, A. Bakar, M. A. A. Hussein, S. F. M. Razali, C. M. C. The use of radial basis function and non-linear autoregressive exogenous neural networks to forecast multi-step ahead of time flood water level |
description |
Many different Artificial Neural Networks (ANN) models of flood have been developed for forecast updating. However, the model performance, and error prediction in which forecast outputs are adjusted directly based on models calibrated to the time series of differences between observed and forecast values, are very interesting and challenging task. This paper presents an improved lead time flood forecasting using Non-linear Auto Regressive Exogenous Neural Network (NARXNN), which shows better performance in term of forecast precision and produces minimum error compared to neural network method using Radial Basis Function (RBF) in examined 12-hour ahead of time. First, RBF forecasting model was employed to predict the flood water level of Kelantan River at Kuala Krai, Kelantan, Malaysia. The model is tested for 1-hour and 7-hour ahead of time water level at flood location. The same analysis has also been taken by NARXNN method. Then, a non-linear neural network model with exogenous input promoted with enhancing a forecast lead time to 12-hour. Both about the performance comparison has briefly been analyzed. The result verified the precision of error prediction of the presented flood forecasting model. |
format |
Article |
author |
Faruq, A. Abdullah, S. S. Marto, A. Bakar, M. A. A. Hussein, S. F. M. Razali, C. M. C. |
author_facet |
Faruq, A. Abdullah, S. S. Marto, A. Bakar, M. A. A. Hussein, S. F. M. Razali, C. M. C. |
author_sort |
Faruq, A. |
title |
The use of radial basis function and non-linear autoregressive exogenous neural networks to forecast multi-step ahead of time flood water level |
title_short |
The use of radial basis function and non-linear autoregressive exogenous neural networks to forecast multi-step ahead of time flood water level |
title_full |
The use of radial basis function and non-linear autoregressive exogenous neural networks to forecast multi-step ahead of time flood water level |
title_fullStr |
The use of radial basis function and non-linear autoregressive exogenous neural networks to forecast multi-step ahead of time flood water level |
title_full_unstemmed |
The use of radial basis function and non-linear autoregressive exogenous neural networks to forecast multi-step ahead of time flood water level |
title_sort |
use of radial basis function and non-linear autoregressive exogenous neural networks to forecast multi-step ahead of time flood water level |
publisher |
Universitas Ahmad Dahlan |
publishDate |
2019 |
url |
http://eprints.utm.my/id/eprint/88600/1/AmrulFaruq2019_TheUseofRadialBasisFunction.pdf http://eprints.utm.my/id/eprint/88600/ https://dx.doi.org/10.26555/ijain.v5i1.280 |
_version_ |
1687393593968295936 |
score |
13.214268 |