Landslide spatial modelling using novel bivariate statistical based Naïve Bayes, RBF Classifier, and RBF network machine learning algorithms
Landslides are major hazards for human activities often causing great damage to human lives and infrastructure. Therefore, the main aim of the present study is to evaluate and compare three machine learning algorithms (MLAs) including Naïve Bayes (NB), radial basis function (RBF) Classifier, and RBF...
Saved in:
Main Authors: | , , , , , , , , , , , , |
---|---|
Format: | Article |
Published: |
Elsevier B.V.
2019
|
Subjects: | |
Online Access: | http://eprints.utm.my/id/eprint/88179/ http://dx.doi.org/10.1016/j.scitotenv.2019.01.329 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
my.utm.88179 |
---|---|
record_format |
eprints |
spelling |
my.utm.881792020-12-14T23:11:45Z http://eprints.utm.my/id/eprint/88179/ Landslide spatial modelling using novel bivariate statistical based Naïve Bayes, RBF Classifier, and RBF network machine learning algorithms He, Qingfeng Shahabi, Himan Shirzadi, Ataollah Li, Shaojun Chen, Wei Wang, Nianqin Chai, Huichan Bian, Huiyuan Ma, Jianquan Chen, Yingtao Wang, Xiaojing Chapi, Kamran Ahmad, Baharin NA Architecture Landslides are major hazards for human activities often causing great damage to human lives and infrastructure. Therefore, the main aim of the present study is to evaluate and compare three machine learning algorithms (MLAs) including Naïve Bayes (NB), radial basis function (RBF) Classifier, and RBF Network for landslide susceptibility mapping (LSM) at Longhai area in China. A total of 14 landslide conditioning factors were obtained from various data sources, then the frequency ratio (FR) and support vector machine (SVM) methods were used for the correlation and selection the most important factors for modelling process, respectively. Subsequently, the resulting three models were validated and compared using some statistical metrics including area under the receiver operating characteristics (AUROC) curve, and Friedman and Wilcoxon signed-rank tests The results indicated that the RBF Classifier model had the highest goodness-of-fit and performance based on the training and validation datasets. The results concluded that the RBF Classifier model outperformed and outclassed (AUROC = 0.881), the NB (AUROC = 0.872) and the RBF Network (AUROC = 0.854) models. The obtained results pointed out that the RBF Classifier model is a promising method for spatial prediction of landslide over the world. Elsevier B.V. 2019-05-01 Article PeerReviewed He, Qingfeng and Shahabi, Himan and Shirzadi, Ataollah and Li, Shaojun and Chen, Wei and Wang, Nianqin and Chai, Huichan and Bian, Huiyuan and Ma, Jianquan and Chen, Yingtao and Wang, Xiaojing and Chapi, Kamran and Ahmad, Baharin (2019) Landslide spatial modelling using novel bivariate statistical based Naïve Bayes, RBF Classifier, and RBF network machine learning algorithms. Science of the Total Environment, 663 . pp. 1-15. ISSN 0048-9697 http://dx.doi.org/10.1016/j.scitotenv.2019.01.329 DOI:10.1016/j.scitotenv.2019.01.329 |
institution |
Universiti Teknologi Malaysia |
building |
UTM Library |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Teknologi Malaysia |
content_source |
UTM Institutional Repository |
url_provider |
http://eprints.utm.my/ |
topic |
NA Architecture |
spellingShingle |
NA Architecture He, Qingfeng Shahabi, Himan Shirzadi, Ataollah Li, Shaojun Chen, Wei Wang, Nianqin Chai, Huichan Bian, Huiyuan Ma, Jianquan Chen, Yingtao Wang, Xiaojing Chapi, Kamran Ahmad, Baharin Landslide spatial modelling using novel bivariate statistical based Naïve Bayes, RBF Classifier, and RBF network machine learning algorithms |
description |
Landslides are major hazards for human activities often causing great damage to human lives and infrastructure. Therefore, the main aim of the present study is to evaluate and compare three machine learning algorithms (MLAs) including Naïve Bayes (NB), radial basis function (RBF) Classifier, and RBF Network for landslide susceptibility mapping (LSM) at Longhai area in China. A total of 14 landslide conditioning factors were obtained from various data sources, then the frequency ratio (FR) and support vector machine (SVM) methods were used for the correlation and selection the most important factors for modelling process, respectively. Subsequently, the resulting three models were validated and compared using some statistical metrics including area under the receiver operating characteristics (AUROC) curve, and Friedman and Wilcoxon signed-rank tests The results indicated that the RBF Classifier model had the highest goodness-of-fit and performance based on the training and validation datasets. The results concluded that the RBF Classifier model outperformed and outclassed (AUROC = 0.881), the NB (AUROC = 0.872) and the RBF Network (AUROC = 0.854) models. The obtained results pointed out that the RBF Classifier model is a promising method for spatial prediction of landslide over the world. |
format |
Article |
author |
He, Qingfeng Shahabi, Himan Shirzadi, Ataollah Li, Shaojun Chen, Wei Wang, Nianqin Chai, Huichan Bian, Huiyuan Ma, Jianquan Chen, Yingtao Wang, Xiaojing Chapi, Kamran Ahmad, Baharin |
author_facet |
He, Qingfeng Shahabi, Himan Shirzadi, Ataollah Li, Shaojun Chen, Wei Wang, Nianqin Chai, Huichan Bian, Huiyuan Ma, Jianquan Chen, Yingtao Wang, Xiaojing Chapi, Kamran Ahmad, Baharin |
author_sort |
He, Qingfeng |
title |
Landslide spatial modelling using novel bivariate statistical based Naïve Bayes, RBF Classifier, and RBF network machine learning algorithms |
title_short |
Landslide spatial modelling using novel bivariate statistical based Naïve Bayes, RBF Classifier, and RBF network machine learning algorithms |
title_full |
Landslide spatial modelling using novel bivariate statistical based Naïve Bayes, RBF Classifier, and RBF network machine learning algorithms |
title_fullStr |
Landslide spatial modelling using novel bivariate statistical based Naïve Bayes, RBF Classifier, and RBF network machine learning algorithms |
title_full_unstemmed |
Landslide spatial modelling using novel bivariate statistical based Naïve Bayes, RBF Classifier, and RBF network machine learning algorithms |
title_sort |
landslide spatial modelling using novel bivariate statistical based naïve bayes, rbf classifier, and rbf network machine learning algorithms |
publisher |
Elsevier B.V. |
publishDate |
2019 |
url |
http://eprints.utm.my/id/eprint/88179/ http://dx.doi.org/10.1016/j.scitotenv.2019.01.329 |
_version_ |
1687393536564002816 |
score |
13.209306 |