Stimating and optimizing safety factors of retaining wall through neural network and bee colony techniques

An important task of geotechnical engineering is a suitable design of safety factor (SF) of retaining wall under both static and dynamic conditions. This paper presents the advantages of both prediction and optimization of retaining wall SF through artificial neural network (ANN) and artificial bee...

Full description

Saved in:
Bibliographic Details
Main Authors: Gordan, Behrouz, Koopialipoor, Mohammadreza, Clementking, A., Tootoonchi, Hossein, Mohamad, Edy Tonnizam
Format: Article
Published: Springer Nature Switzerland AG 2019
Subjects:
Online Access:http://eprints.utm.my/id/eprint/88057/
http://dx.doi.org/10.1007/s00366-018-0642-2
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:An important task of geotechnical engineering is a suitable design of safety factor (SF) of retaining wall under both static and dynamic conditions. This paper presents the advantages of both prediction and optimization of retaining wall SF through artificial neural network (ANN) and artificial bee colony (ABC), respectively. These techniques were selected because of their capability in predicting and optimizing science and engineering problems. To gain purpose of this research, a comprehensive database consisted of 2880 datasets of wall height, wall width, wall mass, soil mass and internal angle of friction as input parameters and SF of retaining wall as output was prepared. In fact, SF is considered as a function of the mentioned parameters. At the first step of modeling, several ANN models were constructed and the best one among them was selected. The coefficient of determination (R2) value of 0.998 for both training and testing datasets was obtained for the best ANN model which indicates an excellent accuracy level in predicting SF values. In the next step of modeling, the results of selected ANN model were used as an input for the optimization technique of ABC. In general, 11 models of ABC optimization with different strategies were built. As a result, by decreasing wall height value from 10 m to 8 m and 5.628 m and using almost constant values for the other input parameters, SF values were obtained as 2.142 and 5.628, respectively. Results of (8.003, 0.794, 0.667, 1800 and 2800) and (5.628, 0.763, 0.660, 1735 and 2679) were obtained for wall height, wall width, internal friction angle, soil mass and wall mass of the best models with 2.142 and 5.628 SF values, respectively.