Consistency of two different approaches to determine the strength of a pairing residual interaction in the rare-earth region

Two fits of the pairing residual interaction in the rare-earth region are independently performed. One is made on the odd-even staggering of masses by comparing measured and explicitly calculated three-point binding-energy differences centered on odd-even nuclei. Another deals with the moments of in...

Full description

Saved in:
Bibliographic Details
Main Authors: M. Nor, Nurhafiza, Rezle, Nor Anita, Lee, Kelvin Kai Wen, Koh, Meng Hock, Bonneau, L., Quentin, P.
Format: Article
Published: American Physical Society 2019
Subjects:
Online Access:http://eprints.utm.my/id/eprint/87915/
http://dx.doi.org/10.1103/PhysRevC.99.064306
Tags: Add Tag
No Tags, Be the first to tag this record!
id my.utm.87915
record_format eprints
spelling my.utm.879152020-11-30T13:36:58Z http://eprints.utm.my/id/eprint/87915/ Consistency of two different approaches to determine the strength of a pairing residual interaction in the rare-earth region M. Nor, Nurhafiza Rezle, Nor Anita Lee, Kelvin Kai Wen Koh, Meng Hock Bonneau, L. Quentin, P. QC Physics Two fits of the pairing residual interaction in the rare-earth region are independently performed. One is made on the odd-even staggering of masses by comparing measured and explicitly calculated three-point binding-energy differences centered on odd-even nuclei. Another deals with the moments of inertia of the first 2+ states of well-deformed even-even nuclei upon comparing experimental data with the results of Inglis-Belyaev moments (supplemented by a crude estimate of the so-called Thouless-Valatin corrections). The sample includes 24 even-even and 31 odd-mass nuclei selected according to two criteria: They should have good rotor properties and should not correspond to low pairing-correlation regimes in their ground states. Calculations are performed in the self-consistent Hartree-Fock plus BCS framework (implementing a self-consistent blocking in the case of odd-mass nuclei). The Skyrme SIII parametrization is used in the particle-hole channel and the fitted quantities are the strengths of |Tz|=1 proton and neutron seniority residual interactions. As a result, the two fits yield sets of strengths in excellent agreement: about 0.1% for the neutron parameters and 0.2% for protons. In contrast, when one performs such a fit on odd-even staggering from quantities deduced from BCS gaps or minimal quasiparticle energies in even-even nuclei, as is traditional, one obtains results significantly different from those obtained in the same nuclei by a fit of moments of inertia. As a conclusion, beyond providing a phenomenological tool for microscopic calculations in this region, we have illustrated the proposition performed in the seminal paper of Bohr et al. [Phys. Rev. 110, 936 (1958)PHRVAO0031-899X10.1103/PhysRev.110.936] that moments of inertia and odd-even staggering in selected nuclei were excellent measuring sticks of nuclear pairing correlations. Furthermore, we have assessed the validity of our theoretical approach which includes simple yet apparently reasonable assumptions (seniority residual interaction, parametrization of its matrix elements as functions of the nucleon numbers, and global Thouless-Valatin renormalization of Inglis-Belyaev moments of inertia). American Physical Society 2019-06-04 Article PeerReviewed M. Nor, Nurhafiza and Rezle, Nor Anita and Lee, Kelvin Kai Wen and Koh, Meng Hock and Bonneau, L. and Quentin, P. (2019) Consistency of two different approaches to determine the strength of a pairing residual interaction in the rare-earth region. Physical Review C, 99 (6). ISSN 2469-9985 http://dx.doi.org/10.1103/PhysRevC.99.064306 DOI:10.1103/PhysRevC.99.064306
institution Universiti Teknologi Malaysia
building UTM Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Teknologi Malaysia
content_source UTM Institutional Repository
url_provider http://eprints.utm.my/
topic QC Physics
spellingShingle QC Physics
M. Nor, Nurhafiza
Rezle, Nor Anita
Lee, Kelvin Kai Wen
Koh, Meng Hock
Bonneau, L.
Quentin, P.
Consistency of two different approaches to determine the strength of a pairing residual interaction in the rare-earth region
description Two fits of the pairing residual interaction in the rare-earth region are independently performed. One is made on the odd-even staggering of masses by comparing measured and explicitly calculated three-point binding-energy differences centered on odd-even nuclei. Another deals with the moments of inertia of the first 2+ states of well-deformed even-even nuclei upon comparing experimental data with the results of Inglis-Belyaev moments (supplemented by a crude estimate of the so-called Thouless-Valatin corrections). The sample includes 24 even-even and 31 odd-mass nuclei selected according to two criteria: They should have good rotor properties and should not correspond to low pairing-correlation regimes in their ground states. Calculations are performed in the self-consistent Hartree-Fock plus BCS framework (implementing a self-consistent blocking in the case of odd-mass nuclei). The Skyrme SIII parametrization is used in the particle-hole channel and the fitted quantities are the strengths of |Tz|=1 proton and neutron seniority residual interactions. As a result, the two fits yield sets of strengths in excellent agreement: about 0.1% for the neutron parameters and 0.2% for protons. In contrast, when one performs such a fit on odd-even staggering from quantities deduced from BCS gaps or minimal quasiparticle energies in even-even nuclei, as is traditional, one obtains results significantly different from those obtained in the same nuclei by a fit of moments of inertia. As a conclusion, beyond providing a phenomenological tool for microscopic calculations in this region, we have illustrated the proposition performed in the seminal paper of Bohr et al. [Phys. Rev. 110, 936 (1958)PHRVAO0031-899X10.1103/PhysRev.110.936] that moments of inertia and odd-even staggering in selected nuclei were excellent measuring sticks of nuclear pairing correlations. Furthermore, we have assessed the validity of our theoretical approach which includes simple yet apparently reasonable assumptions (seniority residual interaction, parametrization of its matrix elements as functions of the nucleon numbers, and global Thouless-Valatin renormalization of Inglis-Belyaev moments of inertia).
format Article
author M. Nor, Nurhafiza
Rezle, Nor Anita
Lee, Kelvin Kai Wen
Koh, Meng Hock
Bonneau, L.
Quentin, P.
author_facet M. Nor, Nurhafiza
Rezle, Nor Anita
Lee, Kelvin Kai Wen
Koh, Meng Hock
Bonneau, L.
Quentin, P.
author_sort M. Nor, Nurhafiza
title Consistency of two different approaches to determine the strength of a pairing residual interaction in the rare-earth region
title_short Consistency of two different approaches to determine the strength of a pairing residual interaction in the rare-earth region
title_full Consistency of two different approaches to determine the strength of a pairing residual interaction in the rare-earth region
title_fullStr Consistency of two different approaches to determine the strength of a pairing residual interaction in the rare-earth region
title_full_unstemmed Consistency of two different approaches to determine the strength of a pairing residual interaction in the rare-earth region
title_sort consistency of two different approaches to determine the strength of a pairing residual interaction in the rare-earth region
publisher American Physical Society
publishDate 2019
url http://eprints.utm.my/id/eprint/87915/
http://dx.doi.org/10.1103/PhysRevC.99.064306
_version_ 1685579008662568960
score 13.214268