Recognition performance of imputed control chart patterns using exponentially weighted moving average
Performance of control chart pattern recogniser (CCPR) is dependent on the quality of data. Furthermore, when data is partially missing, false alarms and misclassification rate are high. This paper studied CCPR with incomplete data and investigated effectiveness of the exponential smoothing in resto...
保存先:
主要な著者: | , |
---|---|
フォーマット: | 論文 |
出版事項: |
Inderscience Enterprises Ltd.
2018
|
主題: | |
オンライン・アクセス: | http://eprints.utm.my/id/eprint/84500/ http://dx.doi.org/10.1504/EJIE.2018.094599 |
タグ: |
タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
|