Finite element modelling of crumb rubber concrete column subjected to earthquakes
Production of sustainable concrete is the most crucial factor to be considered in construction fields. The utilization of waste treated crumb rubber and steel fiber can mitigate the problematic issues of Normal Concrete (NC) which is brittle, low tensile, and low damping performance. The purpose of...
Saved in:
Main Author: | |
---|---|
Format: | Thesis |
Language: | English |
Published: |
2019
|
Subjects: | |
Online Access: | http://eprints.utm.my/id/eprint/81566/1/MuhammadBilalMSKA2019.pdf http://eprints.utm.my/id/eprint/81566/ http://dms.library.utm.my:8080/vital/access/manager/Repository/vital:125024 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
my.utm.81566 |
---|---|
record_format |
eprints |
spelling |
my.utm.815662019-09-10T01:40:59Z http://eprints.utm.my/id/eprint/81566/ Finite element modelling of crumb rubber concrete column subjected to earthquakes Muhammad Bilal, Muhammad Bilal TA Engineering (General). Civil engineering (General) Production of sustainable concrete is the most crucial factor to be considered in construction fields. The utilization of waste treated crumb rubber and steel fiber can mitigate the problematic issues of Normal Concrete (NC) which is brittle, low tensile, and low damping performance. The purpose of this research was to compare the experimental results of Crumb Rubber Concrete (CRC) subjected to earthquake loading with finite element Modelling by using ABAQUS. Three-dimensional finite element analysis of concrete lumped mass column of 35 MPa and having base 275 mm x 80 mm; column 40 mm x 500 mm lumped mass column 120 mm x 190 mm is developed using ABAQUS and subjected to numbers of earthquake loadings. The test specimen was characterized, concrete mix (10%, of rubber particles content), The result of finite element analysis is validated using experimental data. Overall, this research demonstrates the potential use of treated crumb rubber as sustainable concrete that can enhance the damping performance of the concrete structure, and this could be a major benefit for structure in seismic areas where energy dissipation is needed. 2019 Thesis NonPeerReviewed application/pdf en http://eprints.utm.my/id/eprint/81566/1/MuhammadBilalMSKA2019.pdf Muhammad Bilal, Muhammad Bilal (2019) Finite element modelling of crumb rubber concrete column subjected to earthquakes. Masters thesis, Universiti Teknologi Malaysia. http://dms.library.utm.my:8080/vital/access/manager/Repository/vital:125024 |
institution |
Universiti Teknologi Malaysia |
building |
UTM Library |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Teknologi Malaysia |
content_source |
UTM Institutional Repository |
url_provider |
http://eprints.utm.my/ |
language |
English |
topic |
TA Engineering (General). Civil engineering (General) |
spellingShingle |
TA Engineering (General). Civil engineering (General) Muhammad Bilal, Muhammad Bilal Finite element modelling of crumb rubber concrete column subjected to earthquakes |
description |
Production of sustainable concrete is the most crucial factor to be considered in construction fields. The utilization of waste treated crumb rubber and steel fiber can mitigate the problematic issues of Normal Concrete (NC) which is brittle, low tensile, and low damping performance. The purpose of this research was to compare the experimental results of Crumb Rubber Concrete (CRC) subjected to earthquake loading with finite element Modelling by using ABAQUS. Three-dimensional finite element analysis of concrete lumped mass column of 35 MPa and having base 275 mm x 80 mm; column 40 mm x 500 mm lumped mass column 120 mm x 190 mm is developed using ABAQUS and subjected to numbers of earthquake loadings. The test specimen was characterized, concrete mix (10%, of rubber particles content), The result of finite element analysis is validated using experimental data. Overall, this research demonstrates the potential use of treated crumb rubber as sustainable concrete that can enhance the damping performance of the concrete structure, and this could be a major benefit for structure in seismic areas where energy dissipation is needed. |
format |
Thesis |
author |
Muhammad Bilal, Muhammad Bilal |
author_facet |
Muhammad Bilal, Muhammad Bilal |
author_sort |
Muhammad Bilal, Muhammad Bilal |
title |
Finite element modelling of crumb rubber concrete column subjected to earthquakes |
title_short |
Finite element modelling of crumb rubber concrete column subjected to earthquakes |
title_full |
Finite element modelling of crumb rubber concrete column subjected to earthquakes |
title_fullStr |
Finite element modelling of crumb rubber concrete column subjected to earthquakes |
title_full_unstemmed |
Finite element modelling of crumb rubber concrete column subjected to earthquakes |
title_sort |
finite element modelling of crumb rubber concrete column subjected to earthquakes |
publishDate |
2019 |
url |
http://eprints.utm.my/id/eprint/81566/1/MuhammadBilalMSKA2019.pdf http://eprints.utm.my/id/eprint/81566/ http://dms.library.utm.my:8080/vital/access/manager/Repository/vital:125024 |
_version_ |
1646010298270744576 |
score |
13.209306 |