Solar radiation forecast using cloud velocity for photovoltaic systems

Today, solar energy is used in a many different ways. One of the most popular technological developments for this purpose is photovoltaic conversion to electricity. However, power fluctuations due to the variability of solar energy are one of the challenges faced by the implementation of photovoltai...

Full description

Saved in:
Bibliographic Details
Main Authors: Sing, C. K. L., Ken, T. L., Yee, L. K., Kamadinata, J. O., Sidik, N. A. C., Asako, Y., Quen, L. K.
Format: Article
Language:English
Published: Institute for Research and Community Services, Institut Teknologi Bandung 2018
Subjects:
Online Access:http://eprints.utm.my/id/eprint/79855/1/NorAzwadiCheSidik2018_SolarRadiationForecastUsingCloudVelocity.pdf
http://eprints.utm.my/id/eprint/79855/
http://dx.doi.org/10.5614/j.eng.technol.sci.2018.50.4.3
Tags: Add Tag
No Tags, Be the first to tag this record!
id my.utm.79855
record_format eprints
spelling my.utm.798552020-06-04T00:27:48Z http://eprints.utm.my/id/eprint/79855/ Solar radiation forecast using cloud velocity for photovoltaic systems Sing, C. K. L. Ken, T. L. Yee, L. K. Kamadinata, J. O. Sidik, N. A. C. Asako, Y. Quen, L. K. T Technology (General) Today, solar energy is used in a many different ways. One of the most popular technological developments for this purpose is photovoltaic conversion to electricity. However, power fluctuations due to the variability of solar energy are one of the challenges faced by the implementation of photovoltaic systems. To overcome this problem, forecasting solar radiation data several minutes in advance is needed. In this research, a methodology to forecast solar radiation using cloud velocity and cloud moving angle is proposed. Generally, a red-to-blue ratio (RBR) color model and correlation analysis are used for obtaining the cloud velocity and moving angle. Artificial neural network (ANN) forecast models with different input combinations are established. This methodology requires lower computational time since it only uses part of the pixels in the sky image. Based on R-squared analysis, it can be concluded that the ANN model with inputs of cloud velocity and moving angle and average solar radiation showed the highest accuracy among other combinations of inputs. The R-squared value was 0.59 with only a relatively small sample size of 42. The proposed model showed a highest improvement of 75.79% when compared to the ANN model based on historical solar radiation data only. Institute for Research and Community Services, Institut Teknologi Bandung 2018 Article PeerReviewed application/pdf en http://eprints.utm.my/id/eprint/79855/1/NorAzwadiCheSidik2018_SolarRadiationForecastUsingCloudVelocity.pdf Sing, C. K. L. and Ken, T. L. and Yee, L. K. and Kamadinata, J. O. and Sidik, N. A. C. and Asako, Y. and Quen, L. K. (2018) Solar radiation forecast using cloud velocity for photovoltaic systems. Journal of Engineering and Technological Sciences, 50 (4). pp. 479-492. ISSN 2337-5779 http://dx.doi.org/10.5614/j.eng.technol.sci.2018.50.4.3 DOI:10.5614/j.eng.technol.sci.2018.50.4.3
institution Universiti Teknologi Malaysia
building UTM Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Teknologi Malaysia
content_source UTM Institutional Repository
url_provider http://eprints.utm.my/
language English
topic T Technology (General)
spellingShingle T Technology (General)
Sing, C. K. L.
Ken, T. L.
Yee, L. K.
Kamadinata, J. O.
Sidik, N. A. C.
Asako, Y.
Quen, L. K.
Solar radiation forecast using cloud velocity for photovoltaic systems
description Today, solar energy is used in a many different ways. One of the most popular technological developments for this purpose is photovoltaic conversion to electricity. However, power fluctuations due to the variability of solar energy are one of the challenges faced by the implementation of photovoltaic systems. To overcome this problem, forecasting solar radiation data several minutes in advance is needed. In this research, a methodology to forecast solar radiation using cloud velocity and cloud moving angle is proposed. Generally, a red-to-blue ratio (RBR) color model and correlation analysis are used for obtaining the cloud velocity and moving angle. Artificial neural network (ANN) forecast models with different input combinations are established. This methodology requires lower computational time since it only uses part of the pixels in the sky image. Based on R-squared analysis, it can be concluded that the ANN model with inputs of cloud velocity and moving angle and average solar radiation showed the highest accuracy among other combinations of inputs. The R-squared value was 0.59 with only a relatively small sample size of 42. The proposed model showed a highest improvement of 75.79% when compared to the ANN model based on historical solar radiation data only.
format Article
author Sing, C. K. L.
Ken, T. L.
Yee, L. K.
Kamadinata, J. O.
Sidik, N. A. C.
Asako, Y.
Quen, L. K.
author_facet Sing, C. K. L.
Ken, T. L.
Yee, L. K.
Kamadinata, J. O.
Sidik, N. A. C.
Asako, Y.
Quen, L. K.
author_sort Sing, C. K. L.
title Solar radiation forecast using cloud velocity for photovoltaic systems
title_short Solar radiation forecast using cloud velocity for photovoltaic systems
title_full Solar radiation forecast using cloud velocity for photovoltaic systems
title_fullStr Solar radiation forecast using cloud velocity for photovoltaic systems
title_full_unstemmed Solar radiation forecast using cloud velocity for photovoltaic systems
title_sort solar radiation forecast using cloud velocity for photovoltaic systems
publisher Institute for Research and Community Services, Institut Teknologi Bandung
publishDate 2018
url http://eprints.utm.my/id/eprint/79855/1/NorAzwadiCheSidik2018_SolarRadiationForecastUsingCloudVelocity.pdf
http://eprints.utm.my/id/eprint/79855/
http://dx.doi.org/10.5614/j.eng.technol.sci.2018.50.4.3
_version_ 1669007667792707584
score 13.188404