Position estimation error performance model for a minimum configuration 3-D multilateration

A multilateration system estimates the position of emitter using time difference of arrival (TDOA) measurements with a lateration algorithm. It involves solving a set of hyperbolic plane equations to determine the position of the emitter given the TDOA measurements that corresponds to the path diffe...

Full description

Saved in:
Bibliographic Details
Main Authors: Yaro, A. S., Sha'ameri, A. Z., Kamel, N.
Format: Article
Language:English
Published: School of Electrical Engineering and Informatics 2018
Subjects:
Online Access:http://eprints.utm.my/id/eprint/79791/1/AhmadZuriSha%E2%80%99ameri2018_PositionEstimationErrorPerformanceModel.pdf
http://eprints.utm.my/id/eprint/79791/
http://dx.doi.org/10.15676/ijeei.2018.10.1.11
Tags: Add Tag
No Tags, Be the first to tag this record!
id my.utm.79791
record_format eprints
spelling my.utm.797912019-01-28T06:52:28Z http://eprints.utm.my/id/eprint/79791/ Position estimation error performance model for a minimum configuration 3-D multilateration Yaro, A. S. Sha'ameri, A. Z. Kamel, N. TK Electrical engineering. Electronics Nuclear engineering A multilateration system estimates the position of emitter using time difference of arrival (TDOA) measurements with a lateration algorithm. It involves solving a set of hyperbolic plane equations to determine the position of the emitter given the TDOA measurements that corresponds to the path difference (PD) measurement in distance. A performance model is developed using the relative maximum error bound (RMEB) which relates the plane equation condition number, the relative ground receiving station (GRS) geometry and the PD measurement error to estimate the position estimation (PE) error. By using air traffic monitoring for civil aviation as an application, Monte Carlo simulation verifies the PE error of the performance model for a square GRS configuration. The coverage assumed a 3600 bearing, a range of up to 200 km and a maximum altitude of 15 km. Simulation results also show that the performance model estimates the horizontal position error with a maximum absolute error of 0.1 km up to a range of 200 km at an altitude of 15 km and a minimum absolute error of 0.2 km at an altitude of 15 km. School of Electrical Engineering and Informatics 2018 Article PeerReviewed application/pdf en http://eprints.utm.my/id/eprint/79791/1/AhmadZuriSha%E2%80%99ameri2018_PositionEstimationErrorPerformanceModel.pdf Yaro, A. S. and Sha'ameri, A. Z. and Kamel, N. (2018) Position estimation error performance model for a minimum configuration 3-D multilateration. International Journal on Electrical Engineering and Informatics, 10 (1). pp. 153-169. ISSN 2085-6830 http://dx.doi.org/10.15676/ijeei.2018.10.1.11 DOI:10.15676/ijeei.2018.10.1.11
institution Universiti Teknologi Malaysia
building UTM Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Teknologi Malaysia
content_source UTM Institutional Repository
url_provider http://eprints.utm.my/
language English
topic TK Electrical engineering. Electronics Nuclear engineering
spellingShingle TK Electrical engineering. Electronics Nuclear engineering
Yaro, A. S.
Sha'ameri, A. Z.
Kamel, N.
Position estimation error performance model for a minimum configuration 3-D multilateration
description A multilateration system estimates the position of emitter using time difference of arrival (TDOA) measurements with a lateration algorithm. It involves solving a set of hyperbolic plane equations to determine the position of the emitter given the TDOA measurements that corresponds to the path difference (PD) measurement in distance. A performance model is developed using the relative maximum error bound (RMEB) which relates the plane equation condition number, the relative ground receiving station (GRS) geometry and the PD measurement error to estimate the position estimation (PE) error. By using air traffic monitoring for civil aviation as an application, Monte Carlo simulation verifies the PE error of the performance model for a square GRS configuration. The coverage assumed a 3600 bearing, a range of up to 200 km and a maximum altitude of 15 km. Simulation results also show that the performance model estimates the horizontal position error with a maximum absolute error of 0.1 km up to a range of 200 km at an altitude of 15 km and a minimum absolute error of 0.2 km at an altitude of 15 km.
format Article
author Yaro, A. S.
Sha'ameri, A. Z.
Kamel, N.
author_facet Yaro, A. S.
Sha'ameri, A. Z.
Kamel, N.
author_sort Yaro, A. S.
title Position estimation error performance model for a minimum configuration 3-D multilateration
title_short Position estimation error performance model for a minimum configuration 3-D multilateration
title_full Position estimation error performance model for a minimum configuration 3-D multilateration
title_fullStr Position estimation error performance model for a minimum configuration 3-D multilateration
title_full_unstemmed Position estimation error performance model for a minimum configuration 3-D multilateration
title_sort position estimation error performance model for a minimum configuration 3-d multilateration
publisher School of Electrical Engineering and Informatics
publishDate 2018
url http://eprints.utm.my/id/eprint/79791/1/AhmadZuriSha%E2%80%99ameri2018_PositionEstimationErrorPerformanceModel.pdf
http://eprints.utm.my/id/eprint/79791/
http://dx.doi.org/10.15676/ijeei.2018.10.1.11
_version_ 1643658294702637056
score 13.187197