Urban Heat Island mitigation using green roof approach

In urban environments, vegetation has largely been replaced by impervious and often dark surfaces. These conditions contribute to an Urban Heat Island (UHI) effect. This phenomenon is demonstrated in many cities and produced effects such as higher atmospheric temperatures, intensive precipitation, e...

Full description

Saved in:
Bibliographic Details
Main Authors: Sohaili, J., Kar Yan, L., Muniyandi, S. K., Mohamad, S. S.
Format: Article
Language:English
Published: Penerbit UTM Press 2018
Subjects:
Online Access:http://eprints.utm.my/id/eprint/79758/1/JohanSohaili2018_UrbanHeatIslandMitigationusingGreenRoof.pdf
http://eprints.utm.my/id/eprint/79758/
http://dx.doi.org/10.11113/jt.v80.10577
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In urban environments, vegetation has largely been replaced by impervious and often dark surfaces. These conditions contribute to an Urban Heat Island (UHI) effect. This phenomenon is demonstrated in many cities and produced effects such as higher atmospheric temperatures, intensive precipitation, excessive solar radiation and increasing air pollution. Therefore, reducing the surface temperature of roofs in a building may play an important role in improving the conventional roof surfaces with green roofs that offer much lower temperatures throughout a day to reach their thermal performance and reduce the absorption of solar radiation. Thus, this study is focused on determining the effectiveness of the existing green roof in reducing the ambient temperature and humidity of the air above it by comparison with conventional open roof top without vegetation. This study also aims to evaluate the potential of green roof to reduce the air pollutants in improving air quality in urban cities. As a result, by adopting green roof system, it has reduced temperature during the hottest hour in a day at 1230 hour (hr) by 4.3°C when compared to open roof. Green roof has also recorded higher percentage of humidity compared to open roof. Most importantly, it was proven through this study that green roof has the potential of absorbing pollutants in the air by reducing the concentrations of Sulphur dioxide (SO2), Ammonia (NH3), Nitrogen dioxide (NO2), Ozone (O3) and Carbon monoxide (CO) compared to open roof. Thus, green roofs can be considered to be one of the effective methods to mitigate UHI effects in urban cities.