Hybrid SSA-TSR-ARIMA for water demand forecasting
Water supply management effectively becomes challenging due to the human population and their needs have been growing rapidly. The aim of this research is to propose hybrid methods based on Singular Spectrum Analysis (SSA) decomposition, Time Series Regression (TSR), and Automatic Autoregressive Int...
Saved in:
Main Authors: | Suhartono, Suhartono, Isnawati, S., Salehah, N. A., Prastyo, D. D., Kuswanto, H., Lee, M. H. |
---|---|
格式: | Article |
語言: | English |
出版: |
Universitas Ahmad Dahlan
2018
|
主題: | |
在線閱讀: | http://eprints.utm.my/id/eprint/79660/1/MuhammadHisyamLee2018_HybridSSA-TSR-ARIMAforwater.pdf http://eprints.utm.my/id/eprint/79660/ http://dx.doi.org/10.26555/ijain.v4i3.275 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
相似書籍
-
Hybrid ssa-tsr-arima for water demand forecasting
由: Muhammad Hisyam Lee @ Lee Wee Yew, Dedy Dwi Prastyo
出版: (2018) -
Double seasonal ARIMA model for forecasting load demand
由: Mohamed, Norizan, et al.
出版: (2010) -
Estimating the function of oscillatory components in ssa-based forecasting model
由: Sulandari, W., et al.
出版: (2019) -
Hybrid seasonal ARIMA and artificial neural network in forecasting Southeast Asia city air pollutant index
由: Rahman, N. H. A., et al.
出版: (2019) -
Comparison between VAR, GSTAR, FFNN-VAR and FFNN-GSTAR Models for Forecasting Oil Production
由: Suhartono, Suhartono, et al.
出版: (2018)