Physico-chemical properties of stainless steel 316L coated with ginseng-poly (lactic-co-glycolic acid) for stent application

Drug eluting stent is a stent coated with an anti-proliferative drug to prevent in-stent restenosis in blood vessels. Although this stent is superior to the bare stent, another post-stenting complication called late thrombosis, occurs as a result of late re-endotheliazation. Therefore, this project...

Full description

Saved in:
Bibliographic Details
Main Author: Miswan, Zulaika
Format: Thesis
Language:English
Published: 2016
Subjects:
Online Access:http://eprints.utm.my/id/eprint/79095/1/ZulaikaMiswanMFBME2016.pdf
http://eprints.utm.my/id/eprint/79095/
http://dms.library.utm.my:8080/vital/access/manager/Repository/vital:110515
Tags: Add Tag
No Tags, Be the first to tag this record!
id my.utm.79095
record_format eprints
spelling my.utm.790952018-09-27T06:07:37Z http://eprints.utm.my/id/eprint/79095/ Physico-chemical properties of stainless steel 316L coated with ginseng-poly (lactic-co-glycolic acid) for stent application Miswan, Zulaika TP Chemical technology Drug eluting stent is a stent coated with an anti-proliferative drug to prevent in-stent restenosis in blood vessels. Although this stent is superior to the bare stent, another post-stenting complication called late thrombosis, occurs as a result of late re-endotheliazation. Therefore, this project was aimed to develop a drug eluting coating with ginseng extract that contained active ingredients of ginsenosides Rg1 and Re, proven to not only inhibit the proliferation of vascular smooth muscle cells but also to promote the growth of vascular endothelial cells. In this project, poly (lactic-co-glycolic) acid (PLGA) matrix was incorporated with ginseng extract at different ratios: 10%, 30% and 50% (w/w). The gelation solvents were then coated on a stainless steel 316L, a substrate, by a dip coating technique. The coatings were characterized by attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), scanning electron microscopy (SEM) and contact angle analyses while the drug release profile was studied through one month immersion tests and analyzed by a mass spectrometry instrument (Q-TOF LC-MS). The FTIR analyses confirmed that the coatings were composed of ginseng and PLGA. The SEM images showed that a full coverage and even coating was found on the 30% sample. Higher ratio of PLGA caused higher hydrophobicity but not as high as the bare substrate. The immersion study showed that all PLGA concentrations undergoes initial burst release dependent on the concentrations. The release mechanism for the 30% and 50% samples was a combination of diffusion and swelling-controlled of PLGA whereas the release mechanism for the 10% sample was a Fickian diffusion. The optimum coating was found on the 30% sample as it demonstrated acceptable wettability, even coating coverage and controlled release through the PLGA swelling. The ginseng- PLGA coating by a dip coating technique is practicable and it can be used as a drug eluting coating for stent application. 2016-12 Thesis NonPeerReviewed application/pdf en http://eprints.utm.my/id/eprint/79095/1/ZulaikaMiswanMFBME2016.pdf Miswan, Zulaika (2016) Physico-chemical properties of stainless steel 316L coated with ginseng-poly (lactic-co-glycolic acid) for stent application. Masters thesis, Universiti Teknologi Malaysia, Faculty of Biosciences and Medical Engineering. http://dms.library.utm.my:8080/vital/access/manager/Repository/vital:110515
institution Universiti Teknologi Malaysia
building UTM Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Teknologi Malaysia
content_source UTM Institutional Repository
url_provider http://eprints.utm.my/
language English
topic TP Chemical technology
spellingShingle TP Chemical technology
Miswan, Zulaika
Physico-chemical properties of stainless steel 316L coated with ginseng-poly (lactic-co-glycolic acid) for stent application
description Drug eluting stent is a stent coated with an anti-proliferative drug to prevent in-stent restenosis in blood vessels. Although this stent is superior to the bare stent, another post-stenting complication called late thrombosis, occurs as a result of late re-endotheliazation. Therefore, this project was aimed to develop a drug eluting coating with ginseng extract that contained active ingredients of ginsenosides Rg1 and Re, proven to not only inhibit the proliferation of vascular smooth muscle cells but also to promote the growth of vascular endothelial cells. In this project, poly (lactic-co-glycolic) acid (PLGA) matrix was incorporated with ginseng extract at different ratios: 10%, 30% and 50% (w/w). The gelation solvents were then coated on a stainless steel 316L, a substrate, by a dip coating technique. The coatings were characterized by attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), scanning electron microscopy (SEM) and contact angle analyses while the drug release profile was studied through one month immersion tests and analyzed by a mass spectrometry instrument (Q-TOF LC-MS). The FTIR analyses confirmed that the coatings were composed of ginseng and PLGA. The SEM images showed that a full coverage and even coating was found on the 30% sample. Higher ratio of PLGA caused higher hydrophobicity but not as high as the bare substrate. The immersion study showed that all PLGA concentrations undergoes initial burst release dependent on the concentrations. The release mechanism for the 30% and 50% samples was a combination of diffusion and swelling-controlled of PLGA whereas the release mechanism for the 10% sample was a Fickian diffusion. The optimum coating was found on the 30% sample as it demonstrated acceptable wettability, even coating coverage and controlled release through the PLGA swelling. The ginseng- PLGA coating by a dip coating technique is practicable and it can be used as a drug eluting coating for stent application.
format Thesis
author Miswan, Zulaika
author_facet Miswan, Zulaika
author_sort Miswan, Zulaika
title Physico-chemical properties of stainless steel 316L coated with ginseng-poly (lactic-co-glycolic acid) for stent application
title_short Physico-chemical properties of stainless steel 316L coated with ginseng-poly (lactic-co-glycolic acid) for stent application
title_full Physico-chemical properties of stainless steel 316L coated with ginseng-poly (lactic-co-glycolic acid) for stent application
title_fullStr Physico-chemical properties of stainless steel 316L coated with ginseng-poly (lactic-co-glycolic acid) for stent application
title_full_unstemmed Physico-chemical properties of stainless steel 316L coated with ginseng-poly (lactic-co-glycolic acid) for stent application
title_sort physico-chemical properties of stainless steel 316l coated with ginseng-poly (lactic-co-glycolic acid) for stent application
publishDate 2016
url http://eprints.utm.my/id/eprint/79095/1/ZulaikaMiswanMFBME2016.pdf
http://eprints.utm.my/id/eprint/79095/
http://dms.library.utm.my:8080/vital/access/manager/Repository/vital:110515
_version_ 1643658096566861824
score 13.209306